

Contents

Preface xv

About the Book xvii

Part I Optimization Strategies for Different Modes and Uses of HPLC 1

**1.1 2D-HPLC – Method Development for Successful
Separations 3**
Dwight R. Stoll, Ph.D.

- 1.1.1 Motivations for Two-Dimensional Separation 3
- 1.1.1.1 Difficult-to-Separate Samples 3
- 1.1.1.2 Complex Samples 4
- 1.1.1.3 Separation Goals 4
- 1.1.2 Choosing a Two-Dimensional Separation Mode 4
- 1.1.2.1 Analytical Goals Dictate Choice of Mode 5
- 1.1.2.2 Survey of Four 2D Separation Modes 5
- 1.1.2.3 Hybrid Modes Provide Flexibility 7
- 1.1.3 Choosing Separation Types/Mechanisms 8
- 1.1.3.1 Complementarity as a Guiding Principle 8
- 1.1.3.2 Pirkov Compatibility Table 9
- 1.1.3.3 Measuring the Complementarity of Separation Types 9
- 1.1.4 Choosing Separation Conditions 11
- 1.1.4.1 Starting with Fixed First-Dimension Conditions 11
- 1.1.4.2 Starting from Scratch – Flexible First-Dimension Conditions 13
- 1.1.4.3 Special Considerations for Comprehensive 2D-LC Methods 13
- 1.1.4.4 Rules of Thumb 13
- 1.1.5 Method Development Examples 14
- 1.1.5.1 Example 1 – Use of LC-LC to Identify an Impurity in a Synthetic Oligonucleotide 14
- 1.1.5.2 Example 2 – Comprehensive 2D-LC Separation of Surfactants 14
- 1.1.6 Outlook for the Future 17
- Acknowledgment 18
- References 18

1.2	Do you HILIC? With Mass Spectrometry? Then do it Systematically	<i>23</i>
	<i>Thomas Letzel</i>	
1.2.1	Initial Situation and Optimal Use of Stationary HILIC Phases	25
1.2.2	Initial Situation and Optimal Use of the “Mobile” HILIC Phase	28
1.2.2.1	Organic Solvent	28
1.2.2.2	Salts	31
1.2.2.3	pH Value	33
1.2.3	Further Settings and Conditions Specific to Mass Spectrometric Detection	35
1.2.4	Short Summary on Method Optimization in HILIC	36
	References	36
1.3	Optimization Strategies in LC-MS Method Development	<i>39</i>
	<i>Markus M. Martin</i>	
1.3.1	Introduction	39
1.3.2	Developing New Methods for HPLC-MS Separations	39
1.3.2.1	Optimizing the LC Separation	40
1.3.2.1.1	Optimizing for Sensitivity and Limit of Detection – Which Column to Take?	40
1.3.2.1.2	Optimizing Resolution vs. Sample Throughput	41
1.3.2.1.3	MS-Compatible Eluent Compositions and Additives	43
1.3.2.2	Optimizing Ion Source Conditions	44
1.3.2.3	Optimizing MS Detection	47
1.3.2.4	Verifying the Hyphenated Method	48
1.3.2.5	Method Development Supported by Software-based Parameter Variation	49
1.3.3	Transferring Established HPLC Methods to Mass spectrometry	50
1.3.3.1	Transfer of an Entire HPLC Method to a Mass Spectrometer	51
1.3.3.2	Selected Analysis of an Unknown Impurity – Solvent Change by Single-/Multi-Heartcut Techniques	52
	Abbreviations	54
	References	55
1.4	Chromatographic Strategies for the Successful Characterization of Protein Biopharmaceuticals	<i>57</i>
	<i>Szabolcs Fekete, Valentina D'Atri, and Davy Guillarme</i>	
1.4.1	Introduction to Protein Biopharmaceuticals	57
1.4.2	From Standard to High-Performance Chromatography of Protein Biopharmaceuticals	58
1.4.3	Online Coupling of Nondenaturing LC Modes with MS	62
1.4.4	Multidimensional LC Approaches for Protein Biopharmaceuticals	64
1.4.5	Conclusion and Future Trends in Protein Biopharmaceuticals Analysis	66
	References	67

1.5	Optimization Strategies in HPLC for the Separation of Biomolecules	73
	<i>Lisa Strasser, Florian Füssl, and Jonathan Bones</i>	
1.5.1	Optimizing a Chromatographic Separation	73
1.5.2	Optimizing the Speed of an HPLC Method	77
1.5.3	Optimizing the Sensitivity of an HPLC Method	79
1.5.4	Multidimensional Separations (See also Chapter 1.1)	80
1.5.5	Considerations for MS Detection (See also Chapter 1.3)	81
1.5.6	Conclusions and Future Prospects	83
	References	84
1.6	Optimization Strategies in Packed-Column Supercritical Fluid Chromatography (SFC)	87
	<i>Caroline West</i>	
1.6.1	Selecting a Stationary Phase Allowing for Adequate Retention and Desired Selectivity	88
1.6.1.1	Selecting a Stationary Phase for Chiral Separations	88
1.6.1.2	Selecting a Stationary Phase for Achiral Separations	90
1.6.2	Optimizing Mobile Phase to Elute all Analytes	93
1.6.2.1	Nature of the Cosolvent	93
1.6.2.2	Proportion of Cosolvent	94
1.6.2.3	Use of Additives	96
1.6.2.4	Sample Diluent	97
1.6.3	Optimizing Temperature, Pressure, and Flow Rate	97
1.6.3.1	Understanding the Effects of Temperature, Pressure, and Flow Rate on your Chromatograms	97
1.6.3.2	Optimizing Temperature, Pressure, and Flow Rate Concomitantly	99
1.6.4	Considerations on SFC-MS Coupling	100
1.6.5	Summary of Method Optimization	101
1.6.6	SFC as a Second Dimension in Two-Dimensional Chromatography	102
1.6.7	Further Reading	102
	References	103
1.7	Strategies for Enantioselective (Chiral) Separations	107
	<i>Markus Juza</i>	
1.7.1	How to Start?	108
1.7.2	Particle Size	109
1.7.3	Chiral Polysaccharide Stationary Phases as First Choice	110
1.7.4	Screening Coated and Immobilized Polysaccharide CSPs in Normal-Phase and Polar Organic Mode	113
1.7.5	Screening Coated and Immobilized Polysaccharide CSPs in Reversed-Phase Mode	116
1.7.6	Screening Immobilized Polysaccharide CSPs in Medium-Polarity Mode	119

1.7.7	Screening Coated and Immobilized Polysaccharide CSPs under Polar Organic Supercritical Fluid Chromatography Conditions	120
1.7.8	Screening Immobilized Polysaccharide CSPs in Medium-Polarity Supercritical Fluid Chromatography Conditions	125
1.7.9	SFC First?	127
1.7.10	Are There Rules for Predicting Which CSP Is Suited for My Separation Problem?	127
1.7.11	Which Are the Most Promising Polysaccharide CSPs?	127
1.7.12	Are some CSPs Comparable?	129
1.7.13	“No-Go’s,” Pitfalls, and Peculiarities in Chiral HPLC and SFC	132
1.7.14	Gradients in Chiral Chromatography	133
1.7.15	Alternative Strategies to Chiral HPLC and SFC on Polysaccharide CSPs	133
1.7.16	How Can I Solve Enantiomer Separation Problems Without Going to the Laboratory?	135
1.7.17	The Future of Chiral Separations – Fast Chiral Separations (cUHPLC and cSFC)?	136
	References	138
1.8	Optimization Strategies Based on the Structure of the Analytes	141
	<i>Christoph A. Fleckenstein</i>	
1.8.1	Introduction	141
1.8.2	The Impact of Functional Moieties	142
1.8.3	Hydrogen Bonds	143
1.8.4	Influence of Water Solubility by Hydrate Formation of Aldehydes and Ketones	146
1.8.5	Does “Polar” Equal “Hydrophilic”?	148
1.8.6	Peroxide Formation of Ethers	150
1.8.7	The pH Value in HPLC	151
1.8.7.1	Acidic Functional Groups	152
1.8.7.2	Basic Functional Groups	153
1.8.8	General Assessment and Estimation of Solubility of Complex Molecules	155
1.8.9	Octanol–Water Coefficient	157
1.8.10	Hansen Solubility Parameters	160
1.8.11	Conclusion and Outlook	162
	Acknowledgments	163
	References	163
1.9	Optimization Opportunities in a Regulated Environment	165
	<i>Stavros Kromidas</i>	
1.9.1	Introduction	165
1.9.2	Preliminary Remark	165
1.9.3	Resolution	167

1.9.3.1	Hardware Changes	167
1.9.3.1.1	Preliminary Remark	167
1.9.3.1.2	UHPLC Systems	168
1.9.3.1.3	Column Oven	168
1.9.3.2	Improving the Peak Shape	169
1.9.4	Peak-to-Noise Ratio	171
1.9.4.1	Noise Reduction	171
1.9.5	Coefficient of Variation, VC (Relative Standard Deviation, RSD)	171
	References	176

Part II Computer-aided Optimization 177

2.1	Strategy for Automated Development of Reversed-Phase HPLC Methods for Domain-Specific Characterization of Monoclonal Antibodies	179
	<i>Jennifer La, Mark Condina, Leexin Chong, Craig Kyngdon, Matthias Zimmermann, and Sergey Galushko</i>	
2.1.1	Introduction	179
2.1.2	Interaction with Instruments	181
2.1.3	Columns	182
2.1.4	Sample Preparation and HPLC Analysis	183
2.1.5	Automated Method Development	184
2.1.5.1	Columns Screening	185
2.1.5.2	Rapid Optimization	186
2.1.5.3	Fine Optimization and Sample Profiling	188
2.1.6	Robustness Tests	188
2.1.6.1	Selection of the Variables	189
2.1.6.2	Selection of the experimental design	190
2.1.6.3	Definition of the Different Levels for the Factors	191
2.1.6.4	Creation of the Experimental Set-up	191
2.1.6.5	Execution of Experiments	192
2.1.6.6	Calculation of Effects and Response and Numerical and Graphical Analysis of the Effects	192
2.1.6.7	Improving the Performance of the Method	194
2.1.7	Conclusions	196
	References	196
2.2	Fusion QbD® Software Implementation of APLM Best Practices for Analytical Method Development, Validation, and Transfer	199
	<i>Richard Verseput</i>	
2.2.1	Introduction	199
2.2.1.1	Application to Chromatographic Separation Modes	200
2.2.1.2	Small- and Large-Molecule Applications	200

2.2.1.3	Use for Non-LC Method Development Procedures	200
2.2.2	Overview – Experimental Design and Data Modeling in Fusion QbD	201
2.2.3	Analytical Target Profile	201
2.2.4	APLM Stage 1 – Procedure Design and Development	202
2.2.4.1	Initial Sample Workup	202
2.2.5	Chemistry System Screening	204
2.2.5.1	Starting Points Based on Molecular Structure and Chemistry Considerations	205
2.2.5.2	Trend Responses and Data Modeling	205
2.2.6	Method Optimization	207
2.2.6.1	Optimizing Mean Performance	207
2.2.6.2	Optimizing Robustness In Silico – Monte Carlo Simulation	210
2.2.6.3	A Few Words About Segmented (Multistep) Gradients and Robustness	213
2.2.7	APLM Stage 2 – Procedure Performance Verification	214
2.2.7.1	Replication Strategy	214
2.2.8	The USP <1210> Tolerance Interval in Support of Method Transfer	214
2.2.9	What is Coming – Expectations for 2021 and Beyond	216
	References	217

Part III Current Challenges for HPLC Users in Industry 219

3.1	Modern HPLC Method Development	221
	<i>Stefan Lamotte</i>	
3.1.1	Robust Approaches to Practice	222
3.1.1.1	Generic Systems for all Tasks	222
3.1.2	The Classic Reverse-phase System	225
3.1.3	A System that Primarily Separates According to $\pi-\pi$ Interactions	227
3.1.4	A system that Primarily Separates According to Cation Exchange and Hydrogen Bridge Bonding Selectivity	227
3.1.5	System for Nonpolar Analytes	228
3.1.6	System for Polar Analytes	228
3.1.7	Conclusion	230
3.1.8	The Maximum Peak Capacity	230
3.1.9	Outlook	231
	References	231
3.2	Optimization Strategies in HPLC from the Perspective of an Industrial Service Provider	233
	<i>Juri Leonhardt and Michael Haustein</i>	
3.2.1	Introduction	233
3.2.2	Research and Development	233
3.2.3	Quality Control	234

3.2.4	Process Control Analytics	235
3.2.5	Decision Tree for the Optimization Strategy Depending on the Final Application Field	237
3.3	Optimization Strategies in HPLC from the Perspective of a Service Provider – The UNTIE® Process of the CUP Laboratories	239
	<i>Dirk Freitag-Stechl and Melanie Janich</i>	
3.3.1	Common Challenges for a Service Provider	239
3.3.2	A Typical, Lengthy Project – How it Usually Goes and How it Should not be Done!	239
3.3.3	How Do We Make It Better? - The UNTIE® Process of the CUP Laboratories	241
3.3.4	Understanding Customer Needs	241
3.3.5	The Test of an Existing Method	242
3.3.6	Method Development and Optimization	243
3.3.7	Execution of the Validation	245
3.3.8	Summary	248
	Acknowledgments	249
	References	249
3.4	Optimization Strategies in HPLC	251
	<i>Bernard Burn</i>	
3.4.1	Definition of the Task	252
3.4.2	Relevant Data for the HPLC Analysis of a Substance (see also Chapter 1.8)	252
3.4.2.1	Solubility	252
3.4.2.2	Acidity Constants (pK_a)	257
3.4.2.2.1	Polarity of Acidic or Alkaline Substances (see also Chapter 1.8)	257
3.4.2.2.2	UV Spectra	259
3.4.2.2.3	Influence on the Peak Shape	259
3.4.2.2.4	Acid Constant Estimation	263
3.4.2.3	Octanol-Water Partition Coefficient	263
3.4.2.4	UV Absorption	270
3.4.2.5	Stability of the Dissolved Analyte	272
3.4.3	Generic Methods	278
3.4.3.1	General Method for the Analysis of Active Pharmaceutical Ingredients	278
3.4.3.2	Extensions of the Range of Application	279
3.4.3.3	Limits of this General Method	279
3.4.3.4	Example, Determination of Butamirate Dihydrogen Citrate in a Cough Syrup	279
3.4.3.4.1	Basic Data	279
3.4.3.4.2	Expected Difficulties	279
3.4.3.4.3	HPLC Method	279

3.4.3.4.4	Example Chromatogram	279
3.4.4	General Tips for Optimizing HPLC Methods	279
3.4.4.1	Production of Mobile Phases	284
3.4.4.1.1	Reagents	284
3.4.4.1.2	Vessels and Bottles	285
3.4.4.1.3	Measurement of Reagents and Solvent	285
3.4.4.1.4	Preparation of Buffer Solutions	286
3.4.4.1.5	Filtration of Solvents and Buffer	286
3.4.4.1.6	Degassing of Mobile Phases	287
3.4.4.2	Blank Samples	287
3.4.4.3	Defining Measurement Wavelengths for UV Detection	288
3.4.4.4	UV Detection at Low Wavelengths	288
3.4.4.4.1	Solvents	291
3.4.4.4.2	Acids and Buffer Additives	292
3.4.4.4.3	Drift at Solvent Gradients	294
3.4.4.4.5	Avoidance of Peak Tailing	295
3.4.4.6	Measurement Uncertainty and Method Design	302
3.4.4.6.1	Weighing in or Measuring	302
3.4.4.6.2	Dilutions	303
3.4.4.6.3	HPLC Analysis	304
3.4.4.6.4	Internal Standards	305
3.4.4.7	Column Dimension and Particle Sizes	305
	Reference	309

Part IV Current Challenges for HPLC Equipment Suppliers 311

4.1	Optimization Strategies with your HPLC – Agilent Technologies	313
	<i>Jens Trafkowski</i>	
4.1.1	Increase the Absolute Separation Performance: Zero Dead-Volume Fittings	314
4.1.2	Separation Performance: Minimizing the Dispersion	314
4.1.3	Increasing the Throughput – Different Ways to Lower the Turnaround Time	316
4.1.4	Minimum Carryover for Trace Analysis: Multiwash	317
4.1.5	Increase the Performance of What you have got – Modular or Stepwise Upgrade of Existing Systems	318
4.1.6	Increase Automation, Ease of Use, and Reproducibility with the Features of a High-End Quaternary UHPLC Pump	319
4.1.7	Increase Automation: Let your Autosampler do the Job	321
4.1.8	Use Your System for Multiple Purposes: Multimethod and Method Development Systems	321
4.1.9	Combine Sample Preparation with LC Analysis: Online SPE	322

4.1.10	Boost Performance with a Second Chromatographic Dimension: 2D-LC (see also Chapter 1.1) 323
4.1.11	Think Different, Work with Supercritical CO ₂ as Eluent: SFC – Supercritical Fluid Chromatography (see also Chapter 1.6) 324
4.1.12	Determine Different Concentration Ranges in One System: High-Definition Range (HDR) HPLC 325
4.1.13	Automize Even Your Method Transfer from other LC Systems: Intelligent System Emulation Technology (ISET) 326
4.1.14	Conclusion 327
	References 328
4.2	To Empower the Customer – Optimization Through Individualization 329
	<i>Kristin Folmert and Kathryn Monks</i>
4.2.1	Introduction 329
4.2.2	Define Your Own Requirements 329
4.2.2.1	Specification Sheet, Timetable, or Catalogue of Measures 329
4.2.2.2	Personnel Optimization Helps to make Better Use of HPLC 331
4.2.2.3	Mastering Time-Consuming Method Optimizations in a Planned Manner 332
4.2.2.4	Optimizations at Device Level do not Always have to Mean an Investment 332
4.2.3	An Assistant Opens Up Many New Possibilities 333
4.2.3.1	If the HPLC System must Simply be able to do more in the Future 333
4.2.3.2	Individual Optimizations with an Assistant 333
4.2.3.3	Automatic Method Optimization and Column Screening 334
4.2.3.4	A New Perspective at Fractionation, Sample Preparation, and Peak Recycling 335
4.2.3.5	Continuous Chromatography, a New Level of Purification 336
4.2.4	The Used Materials in the Focus of the Optimization 337
4.2.4.1	Wetted vs. Dry Components of the HPLC 337
4.2.4.2	Chemical Resistance of Wetted Components 338
4.2.4.3	Bioinert Components 340
4.2.4.3.1	Material Certification 340
4.2.5	Software Optimization Requires Open-Mindedness 340
4.2.6	Outlook 341
4.3	(U)HPLC Basics and Beyond 343
	<i>Gesa Schad, Brigitte Bollig, and Kyoko Watanabe</i>
4.3.1	An Evaluation of (U)HPLC-operating Parameters and their Effect on Chromatographic Performance 343
4.3.1.1	Compressibility Settings 343
4.3.1.2	Solvent Composition and Injection Volume 346
4.3.1.3	Photodiode Array Detector: Slit Width 348

4.3.2	“Analytical Intelligence” – AI, M2M, IoT – How Modern Technology can Simplify the Lab Routine	349
4.3.2.1	Auto-Diagnostics and Auto-Recovery to Maximize Reliability and Uptime	349
4.3.2.2	Advanced Peak Processing to Improve Resolution	350
4.3.2.3	Predictive Maintenance to Minimize System Downtime	353
	References	354
4.4	Addressing Analytical Challenges in a Modern HPLC Laboratory	<i>355</i>
	<i>Frank Steiner and Soo Hyun Park</i>	
4.4.1	Vanquish Core, Flex, and Horizon – Three Different Tiers, all Dedicated to Specific Requirements	356
4.4.2	Intelligent and Self-Contained HPLC Devices	362
4.4.3	2D-LC for Analyzing Complex Samples and Further Automation Capabilities (see also Chapter 1.1)	363
4.4.3.1	Loop-based Single-Heart-Cut 2D-LC	364
4.4.3.2	Loop-based Multi-Heart-Cut 2D-LC	364
4.4.3.3	Trap-based Single-Heart-Cut 2D-LC for Eluent Strength Reduction	366
4.4.3.4	Trap-based Single-Heart-Cut 2D LC-MS Using Vanquish Dual Split Sampler	367
4.4.4	Software-Assisted Automated Method Development	368
	Abbreviations	374
	References	374
4.5	Systematic Method Development with an Analytical Quality-by-Design Approach Supported by Fusion QbD and UPLC-MS	<i>375</i>
	<i>Falk-Thilo Ferse, Detlev Kurth, Tran N. Pham, Fadi L. Alkhateeb, and Paul Rainville</i>	
	References	384
	Index	<i>385</i>