

Contents

Preface — V

List of contributing authors — XIII

Chanyapat Ittibenjapong, Prit Kanjanahitanon, Punnita Chaichamni, Sirirat Panich, and Nuchutha Thamsumet

1 Green synthesis of silver nanoparticles from *Catunaregam tomentosa* extract — 1

- 1.1 Introduction — 1
- 1.2 Materials and methods — 4
- 1.2.1 Chemicals and plant samples — 4
- 1.2.2 Characterization of *C. tomentosa* powder — 4
- 1.2.3 Preparation and characterization of *C. tomentosa* extracts — 4
- 1.2.4 Determination of saponins using foam test — 5
- 1.2.5 Evaluation of antioxidant activity by DPPH assay — 5
- 1.2.6 Chemical synthesis of silver nanoparticles — 5
- 1.2.7 Green synthesis of silver nanoparticles — 5
- 1.2.8 Characterization of silver nanoparticles — 5
- 1.3 Results and discussion — 6
- 1.3.1 Characterization of *C. tomentosa* fruit powder and extracts — 6
- 1.3.2 Characterization of AgNPs synthesized using *C. tomentosa* fruit extracts — 7
- 1.4 Conclusions — 10
- References — 10

Daniel Omeodisemi Omokpariola and Patrick Leonard Omokpariola

2 Health and exposure risk assessment of heavy metals in rainwater samples from selected locations in Rivers State, Nigeria — 13

- 2.1 Methodology — 13
- 2.2 Methodology — 14
- 2.2.1 Sampling site and methodology — 14
- 2.2.2 Analytical method — 14
- 2.2.3 Health and exposure risk assessment — 15
- 2.3 Results and discussion — 16
- 2.3.1 Heavy metal concentration of rainwater — 16
- 2.3.2 Average concentration of heavy metal in rainwater — 18
- 2.3.3 Carcinogenic risk assessment — 19
- 2.3.4 Non-carcinogenic risk assessment — 21
- 2.4 Conclusions — 23
- References — 24

Chinda Worokwu and Kechinyere Chinda

3 Social media and learning in an era of coronavirus among chemistry students in tertiary institutions in Rivers State — 27

- 3.1 Introduction — 28
- 3.2 Types of learning — 29
- 3.2.1 Factors militating the use of social media in teaching and learning during the (COVID-19) — 32
- 3.2.2 Shift from classroom learning to virtual learning — 33
- 3.3 Finance — 33
- 3.4 Mental health — 33
- 3.5 Assessment and evaluation — 34
- 3.5.1 Review of empirical literature — 34
- 3.6 Statement of the problem — 35
- 3.7 Aim of the study — 35
- 3.8 Research questions — 36
- 3.9 Hypotheses — 36
- 3.10 Methodology — 36
- 3.11 Results — 37
- 3.12 Discussion — 39
- 3.13 Conclusion — 41
- 3.14 Suggestions — 41
- References — 42

Adeleke Adeniyi and Olayiwola Giwa

4 Accumulation and health effects of metals in selected urban groundwater — 45

- 4.1 Introduction — 45
- 4.2 Materials and methods — 46
- 4.2.1 Materials and chemicals — 46
- 4.2.2 Sampling area — 47
- 4.2.3 Sampling and sample preparation — 47
- 4.2.4 FAAS analysis and quantification — 47
- 4.2.5 Statistical analysis — 48
- 4.2.6 Risk assessment — 48
- 4.3 Results and discussion — 48
- 4.4 Conclusion — 51
- References — 52

Fawzia Narod and Vickren Narrainsawmy

5	Evaluation of the Chemistry curriculum at the lower secondary level: feedback from educators — 55
5.1	Introduction — 55
5.2	The context — 56
5.3	The rationale — 57
5.4	Aim of the study — 57
5.5	Research questions — 57
5.6	Theoretical framework — 58
5.7	Methodology — 58
5.7.1	The participants — 58
5.7.2	Instrument — 59
5.7.3	Data collection — 59
5.7.4	Data analysis — 60
5.8	Results — 60
5.9	Discussions of results — 61
5.9.1	Ensuring curriculum continuity — 61
5.9.2	Promoting knowledge transfer — 63
5.9.3	Fostering laboratory learning experiences — 64
5.9.4	Avoiding curriculum overload — 65
5.10	Conclusions — 66
	References — 67

Jimmy Lowe and John P. Canal

6	Polymers, plastics, & more – educating post-secondary students from different disciplines with polymer science — 71
6.1	Introduction — 71
6.2	Course content for Science 300 (SCI 300) at SFU — 72
6.2.1	Teaching practice for SCI 300 — 73
6.2.2	Feedback and findings — 75
6.3	Course content for prosthetics and orthotics (PROR) at BCIT — 77
6.3.1	Teaching practice — 78
6.3.2	Feedback and findings — 79
6.4	Limitations and future studies — 79
6.5	Conclusions — 79
	References — 80

Marie Constance Béavogui, Irina Viktorovna Loginova, Ahmed Amara Konaté and Sékou Amadou Condé

7	Influence of lime (CaO) on low temperature leaching of some types of bauxite from Guinea — 83
7.1	Introduction — 83
7.2	Data and methodology — 84

7.3	Results and discussions — 86
7.3.1	Preparation of samples — 86
7.3.2	Chemical analysis of samples before leaching — 87
7.3.3	Analysis of the bauxite leaching — 87
7.4	Conclusion — 92
	References — 92

Johnson Oluwaseun Odukoya, Eugenie Kayitesi, Mokgadi Precious Mphahlele, Charlotte Mungho Tata, Jean Michel Njinkoue, Inocent Gouado, Monisola Itohan Ikhile and Derek Tantoh Ndinteh

8	Contribution of the volatile components from fresh egg, adult female and male of <i>Pestarella tyrrhena</i> to odour production — 95
8.1	Introduction — 96
8.2	Materials and methods — 97
8.2.1	Preparation of samples — 97
8.2.2	Volatile components and fatty acid methyl esters analysis — 97
8.2.3	Statistical analysis — 97
8.3	Results and discussion — 97
8.4	Conclusion — 104
	References — 104

Héctor Hernández-Mendoza, Nancy Lara-Almazán, Abraham Kuri-Cruz, Elizabeth Teresita Romero-Guzmán, and María Judith Ríos-Lugo

9	Quadrupole inductively coupled plasma mass spectrometry and sector field ICP-MS: a comparison of analytical methods for the quantification of As, Pb, Cu, Cd, Zn, and U in drinking water — 109
9.1	Introduction — 110
9.2	Experimental — 111
9.2.1	ICP-MS — 111
9.2.2	Materials and reagents — 111
9.2.3	Sample preparation — 112
9.3	Results and discussion — 113
9.3.1	Measurement parameter optimization — 113
9.3.2	Linearity, LOD, and LOQ — 115
9.3.3	Accuracy and precision — 116
9.3.4	Uncertainty — 116
9.3.5	Analysis of samples — 118
9.4	Conclusions — 122
	References — 122

Lawrence Olusegun Ajala, Ewa Ezeali Ali, Emmanuel Okewu Nnachi and Valentine Ifenna Onwukeme

10 Design of locally sourced activated charcoal filter from maize cob for wastewater decontamination: an approach to fight waste with waste — 125

- 10.1 Introduction — 125
- 10.2 Experimental details — 127
- 10.2.1 Sample collection and treatment — 127
- 10.2.2 Carbonization, activation and optimisation — 127
- 10.2.3 Physical and chemical characterization — 127
- 10.2.4 Fixed bed adsorption studies — 128
- 10.2.5 Physicochemical properties of untreated and treated wastewater — 128
- 10.2.6 Analytical method control — 128
- 10.2.7 Statistical and chemometric analyses — 129
- 10.3 Results and discussion — 129
- 10.3.1 Optimization studies — 129
- 10.3.2 Characterization of adsorbent — 132
- 10.3.3 Properties of wastewater treated with CAC and MAC — 136
- 10.4 Conclusions — 141
- 10.5 References — 142

Onome Ejeromedoghene, Olayinka Oderinde and Sheriff Adewuyi

11 Advances in polymeric ionic liquids-based smart polymeric materials: emerging fabrication strategies — 145

- 11.1 Introduction — 145
- 11.2 Polymeric ionic liquids (PILs): preparation strategies — 146
- 11.2.1 Homopolymerization — 146
- 11.2.2 Copolymerization — 146
- 11.2.3 Free radical polymerization (FRP) — 149
- 11.2.4 Atom transfer radical polymerization (ATRP) — 149
- 11.2.5 Reversible addition fragmentation chain transfer (RAFT) polymerization — 151
- 11.2.6 Photopolymerization — 152
- 11.3 Applications of smart/intelligent polymers based on PILs — 153
- 11.4 Conclusion and prospects — 156
- 11.5 References — 156

Index — 159