Stress Proteins

Contributors

H. Abe, D.M. Altmann, A.-P. Arrigo, M. Bachelet, L. Battistini, R. Bomprezzi, G. Borsellino, I.R. Brown, C. Buttinelli, R. Carroll, R.S. Gupta, J.B. Harrub, K. Himeno, A.D. Johnson, D.E. Kovacs, D.S. Latchman, G.C. Li, C. Mattei, E. Mimnaugh, N.F. Mivechi, C. Montesperelli, M. Morange, R.I. Morimoto, G. Multhoff, K. Nagata, L. Neckers, S.G. Newton, J. Nishizawa, T.S. Nowak, Jr., C.M. Pickart, B.S. Polla, C. Pozzilli, X. Préville, G. Ristori, M. Salvetti, T.W. Schulte, F.R. Sharpe, Y. Shi, B.J. Soltys, P.K. Srivastava, A. Stephanou, W.J. Valentine, W. van Eden, M. Vignola, D.M. Yellon, Q. Zhou

Editor
David S. Latchman

Contents

CHAPTER 1 Stress Proteins: An Overvie

Stress Proteins: An Overview	
D.S. Latchman. With 1 Figure	1
A. Introduction B. The Stress Proteins C. Functions of Stress Proteins D. Hsp Expression and Regulation E. Stress Proteins and Protection F. Stress Proteins and Human Disease G. Conclusion	1 3 4 5 6
CHAPTER 2	
The Hsp90 Chaperone Family	
L. Neckers, E. Mimnaugh and T.W. Schulte. With 2 Figures	9
A. General Aspects B. The Early Protein Folding Complex C. Hsp90-Containing Multimolecular Complexes I. The Steroid Receptor-Associated Hsp90-Containing Intermediate Folding Complex II. The Steroid Receptor-Associated Hsp90-Containing Mature Folding Complex	9 11 11 11
D. Individual Chaperone and Co-chaperone Proteins Found in Hsp90 Complexes I. Hsp70 II. p48 ^{Hsp} III. p60 ^{Hop} IV. p23 V. Immunophilins VI. Other TPR-Containing Proteins VII. p50 ^{Cde37}	13 13 13 13 14 14 15 15
E. Refolding of Denatured Proteins	16
F. Benzoquinone Ansamycins and Nucleotide Binding to Hsp90	18

12

XII

G. Hsp90 Client Proteins	22
I. Transcription Factors	22
1. Steroid Receptors	22
2. Aryl Hydrocarbon Receptor	23
3. Mutated p53	24
4. Heat Shock Factor	24
II. Protein Kinases	25
1. Tyrosine Kinases	25
a) The Src Family Kinases	25
b) Weel Kinase	26
c) Sevenless Tyrosine Kinase	26
d) Receptor Tyrosine Kinases – p185 ^{erhB2}	27
2. Serine/Threonine Kinases	27
a) Raf-1 Kinase	27
b) Casein Kinase II	28
c) Heme-Regulated eIF-2\alpha Kinase (HRI)	28
d) Cdk4/Cdk6	29
III. Other Proteins	29
1. Cytoskeletal Proteins	29
2. Calmodulin	29
3. βγ-Subunits of Trimeric GTP-Binding Proteins	30
4. Proteasome	30
5. Hepadnavirus Reverse Transcriptase	30
6. Tumor Necrosis Factor Receptor and	,707
Detinablestone Protein	21
Retinoblastoma Protein	31
H. Hsp90 and Drug Development	31
I. Conclusion	32
References	32
CHAPTER 3	
H 46L LD 4L TO	
Heat Shock Protein 70	
G.C. Li and N.F. Mivechi. With 7 Figures	43
A. Introduction	43
B. Expression and Function of hsp70.	43
I. Hsp70, Transient Thermotolerance and	4.7
Permanent Heat Resistance	43
II. Hsp70 and Apoptosis	45 47
III. Hsp70 Protects Cells from Oxidative Stress IV. Hsp70 Protects Cells from Oxidative Stress	
IV. Hsp70 Protects Cells from X-Ray Damage	49
V. Hsp70 as Molecular Chaparana	49
V. Hsp70 as Molecular Chaperone C. Regulation of hsp70	5(
C. Regulation of hsp7()	52
1. Heat Shock Transcription Factor (HSF), the	
Transcriptional Regulator of hsp70	52

Contents XIII

II. Signal Transduction Leading to Modulation	
of hsp70 Levels	53
III. Negative Regulatory Effect of ERK1 on hsp70	
Gene Expression	54
IV. Mutational Analysis of HSF-1 Phosphorylation by ERK1 Protein Kinase	55
V. Modulation of HSF-1 by Other Protein Kinases	ວວ 58
VI. Implication of HSF-1 Regulation by Functionally	Je
Opposing Signaling Cascades	58
VII. Regulation of Heat Shock Response:	•
Possible Involvement of Ku Autoantigen	59
References	61
CHAPTER 4	
Mitochondrial Molecular Chaperones hsp60 and	
mhsp70: Are Their Roles Restricted to Mitochondria?	
B.J. Soltys and R.S. Gupta. With 4 Figures	69
A. Introduction	69
B. Structure and Function	70
I. Studies with Purified Proteins	70
1. Hsp70/DnaK	70
2. Hsp60/GroEL	71
II. In Vivo and Mitochondrial Systems	73
C. Are hsp60 and mhsp70 Restricted to Mitochondria?	75
I. Subcellular Localization: The Unexplained Findings	75
II. Consideration of Possible Artifacts	81
III. Possible Extramitochondrial Functions	84
IV. Proposed Transport Mechanisms	85 90
D. Hsp60 in Drug Resistance and Disease E. Future Prospects	90
References	92
References	,,,
CHAPTER 5	
Role of Hsp27 and Related Proteins	
AP. Arrigo and X. Préville. With 4 Figures	101
A. Introduction	101
B. sHsp Genes and Control of Their Expression	102
I. The Family of sHsp and the Structure of the	
Genes Encoding These Proteins	102
II. Regulation of the Expression of sHsp Genes	103
by Heat Shock	103
III. Regulation of the Constitutive and Hormone-Dependent	10.1

XIV

IV. Tissue-Specific sHsp Expression During	
Development and in Adult Organisms	104
V. Specific sHsp Expression During Early	_
Differentiation	105
VI. Pathological sHsp Expression and	
Associated Diseases	106
C. Biochemical Properties of sHsp	108
I. Structural Organization of sHsp	108
II. Quaternary Structure of sHsp	108
III. Phosphorylation of sHsp	109
IV. Cellular Localization of sHsp	110
D. Functions of sHsp	111
sHsp Expression Induces Thermotolerance and	
Protects Cytoskeletal Architecture	111
II. sHsp Act as Protein Chaperones	112
III. sHsp Protection Against TNF and	
Oxidative Stress Inducers	112
IV. sHsp Expression Protects Against Apoptosis	116
1. sHsp Interfere with In Vitro-Mediated Apoptosis	116
2. sHsp as Essential Anti-apoptotic Proteins	
During Early Cell Differentiation	117
3. Molecular Mechanisms Underlying the	
Anti-apoptotic Function of sHsp	117
E. Conclusions	118
References	120
CHAPTER 6	
Libiquities and the Ctassa Daniera	
Ubiquitin and the Stress Response	122
C.M. PICKART. With 3 Figures	133
A. Introduction	133
B. The Ubiquitin-Proteasome Pathway	134
C. The Ubiquitin Pathway and the Stress Response	136
I. Stress Proteins in the Ubiquitin Pathway	137
1. Ubiquitin	137
2. Ubiquitin-Conjugating Enzymes	138
3. Other Pathway Components	139
II. Ubiquitin Conjugation in Stressed Cells	140
III. Ubiquitin-Mediated Degradation in Stressed Cells	142
11. The Ubiquitin Pathway and Induction of	172
the Stress Response	144
V. Involvement of Molecular Chaperones in	1-4-4
Ubiquitin-Dependent Degradation	145
D. Outstanding Questions	148
References	149
	ノイン

Contents XV

	CHA	PT.	ER	7
--	-----	-----	-----------	---

Regulation of Heat Shock Genes by Cytokines	
A. Stephanou and D.S. Latchman. With 6 Figures	. 1:
A. Introduction	
B. Cytokines	. 1:
C. Transcription Factors Activated by the	
IL-6 Receptor Family	
I. C/EBPs	
II. STATs D. Role of Interleukin-6 Family of Cytokines in Regulating	. 1:
Hsps	. 1:
E. Role of IFN-γ in Regulating Hsp Expression	
F. Elevation of C/EBPs and STATs and Hsps Expression During	. 1
Inflammatory Pathological States	. 1
G. Role of IL-6 and Hsps in SLE	. 10
H. Conclusion	. 1
References	
CHAPTER 8	
Regulation of Heat Shock Genes by Ischemia	
T.S. Nowak, Jr., Q. Zhou, W.J. Valentine, J.B. Harrub and	
H. ABE. With 6 Figures	. 1
A. Introduction	. 1
B. Patterns of Heat Shock Gene Expression After Global and Focal Ischemia	. 1
I. Gene Expression and Neuronal Vulnerability	. 1
After Global Ischemia	. 1
II. Gene Expression After Focal Ischemia	
III. Cryptic hsp72 Expression After Ischemia	
C. Regulation of the Postischemic Heat Shock Response	
I. Injury Thresholds and the Stress Response	
1. Thresholds for Expression of hsp72 and	
Other Ischemia-Inducible Genes	. 1.
2. Temperature Effects on hsp72 Expression After	
Global Ischemia	. 1.
II. Heat Shock Factor Activation After	
Global Ischemia	. 13
III. Heat Shock Regulation After Anoxia/Aglycemia in	
Hippocampal Slices	. 1
1. Hsp72 Induction After In Vitro Anoxia/Aglycemia	. 1
2. Pharmacological Manipulation of hsp72 Expression	. 1
D. Summary and Conclusions	
References	1

XIV Contents

IV.	Tissue-Specific sHsp Expression During	
	Development and in Adult Organisms	104
V.	Specific sHsp Expression During Early	
	Differentiation	105
VI.	Pathological sHsp Expression and	
	Associated Diseases	106
C. Biod	chemical Properties of sHsp	108
I.	Structural Organization of sHsp	108
	Quaternary Structure of sHsp	108
	Phosphorylation of sHsp	109
	Cellular Localization of sHsp	110
D. Fun	ctions of sHsp	111
I.	sHsp Expression Induces Thermotolerance and	
	Protects Cytoskeletal Architecture	111
II.	sHsp Act as Protein Chaperones	112
III.	sHsp Protection Against TNF and	
	Oxidative Stress Inducers	112
IV.	. sHsp Expression Protects Against Apoptosis	116
	1. sHsp Interfere with In Vitro-Mediated Apoptosis	116
	2. sHsp as Essential Anti-apoptotic Proteins	
	During Early Cell Differentiation	117
	3. Molecular Mechanisms Underlying the	
	Anti-apoptotic Function of sHsp	117
E. Cor	iclusions	118
Refere		120
CHAP	TER 6	
Ubiqui	tin and the Stress Response	
	CICKART. With 3 Figures	133
	5	
	roduction	133
B. The	Ubiquitin-Proteasome Pathway	134
C. The	Ubiquitin Pathway and the Stress Response	136
l	Stress Proteins in the Ubiquitin Pathway	137
	1. Ubiquitin	137
	2. Ubiquitin-Conjugating Enzymes	138
	3. Other Pathway Components	139
I l	Ubiquitin Conjugation in Stressed Cells	140
H	I. Ubiquitin-Mediated Degradation in Stressed Cells	142
IV	7. The Ubiquitin Pathway and Induction of	
	the Stress Response	144
V	7. Involvement of Molecular Chaperones in	
	Ubiquitin-Dependent Degradation	145
D. Ou	itstanding Questions	148
Refere	ences	1.40

Contents XV

CHAPT	BR.	/
-------	-----	---

Regulation of Heat Shock Genes by Cytokines	
A. Stephanou and D.S. Latchman. With 6 Figures	153
A. Introduction	153
B. Cytokines	154
C. Transcription Factors Activated by the	
IL-6 Receptor Family	155
I. C/EBPs	155
II. STATs	156
D. Role of Interleukin-6 Family of Cytokines in Regulating	
Hsps	157
E. Role of IFN- γ in Regulating Hsp Expression	161
F. Elevation of C/EBPs and STATs and Hsps Expression During	
Inflammatory Pathological States	163
G. Role of IL-6 and Hsps in SLE	164
H. Conclusion	167
References	167
CHAPTED 0	
CHAPTER 8	
Regulation of Heat Shock Genes by Ischemia	
T.S. Nowak, Jr., Q. Zhou, W.J. Valentine, J.B. Harrub and	
H. Abe. With 6 Figures	173
A. Introduction	173
B. Patterns of Heat Shock Gene Expression After	173
Global and Focal Ischemia	174
I. Gene Expression and Neuronal Vulnerability	1/7
After Global Ischemia	174
II. Gene Expression After Focal Ischemia	178
III. Cryptic hsp72 Expression After Ischemia	180
C. Regulation of the Postischemic Heat Shock Response	183
I. Injury Thresholds and the Stress Response	183
1. Thresholds for Expression of hsp72 and	
Other Ischemia-Inducible Genes	183
2. Temperature Effects on hsp72 Expression After	
Global Ischemia	184
II. Heat Shock Factor Activation After	
Global Ischemia	185
III. Heat Shock Regulation After Anoxia/Aglycemia in	
Hippocampal Slices	187
1. Hsp72 Induction After In Vitro Anoxia/Aglycemia	187
2. Pharmacological Manipulation of hsp72 Expression	189
D. Summary and Conclusions	190
References	101

XVI Contents

CHAPTER 9

Regulation of Heat Snock Transcription Factors by response of	
Ischemia/Reperfusion in the Heart and Brain	201
J. NISHIZAWA and K. NAGATA. With 4 Figures	201
A. Introduction	201
B. Regulation of Heat Shock Gene Transcription	202
I. Family of Heat Shock Factors	202
II. Regulation of DNA-Binding Activity of HSF1	203
C. Damage by Ischemia and Reperfusion	203
I. Ischemia	203
II. Reperfusion	205
D. Regulation of Hsps by Ischemia/Reperfusion	
in the Brain and Heart	205
I. Induction of Hsps by Ischemia/Reperfusion	200
in the Brain	205
II. Induction of Hsps by Ischemia/Reperfusion	200
	208
in the Heart	200
E. Regulation of HSF Activation by Hypoxia or	208
Ischemia/Reperfusion	
I. HSF Activation by Hypoxia	208
II. HSF Activation by Ischemia in the Brain	209
III. HSF Activation by Ischemia/Reperfusion	200
in the Heart	209
IV. HSF Activation by Ischemia/Reperfusion	
in Other Tissues	212
F. Ischemic Tolerance by Hsps in the Brain and Heart	213
I. Ischemic Tolerance by Hsps in the Brain	213
II. Myocardial Protection Against Ischemia by Hsps	213
G. Mechanisms of HSF Activation by Hypoxia or	
Ischemia/Reperfusion	214
I. Specific Activation of HSF1 by Hypoxia or	
Ischemia/Reperfusion	214
II. Signals for the Activation of HSF1 by	
Hypoxia or Ischemia/Reperfusion	214
1. ATP Depletion	215
2. Reactive Oxygen Species	215
3. Arachidonic Acid and Its Metabolites	217
4. Decreased Intracellular pH	217
H. Clinical Application and Future Perspective	217
References	218
	0
CHAPTER 10	
Autoregulation of the Heat Shock Response	
Y. Shi and R.I. Morimoto. With 3 Figures	225
	~

Contents	XVII

A. Introduction	225
B. Regulation of the Heat Shock Response in Eukaryotes	226
I. Overview	226
II. Biochemical Study of Autoregulation in	
Higher Eukaryotes	228
III. Genetic Evidence for Autoregulation of the Heat Shock	
Response in Yeast and Drosophila	230
C. Regulation of the Heat Shock Response in Prokaryotes	231
I. Overview	231
II. Genetic Evidence for Autoregulation of the <i>E. coli</i> Heat Shock Response	232
III. Biochemical Studies on Autoregulation of the <i>E. coli</i>	232
Heat Shock Response	233
D. Common Features of the Prokaryotic and	233
Eukaryotic Heat Shock Response	234
References	235
CHAPTER 11	
The Cellular Stress Gene Response in Brain	
I.R. Brown and F.R. Sharp. With 2 Figures	243
-	243
A. Introduction	243
Temperature Increase	243
I. Differential Induction of Heat Shock mRNA in	۷٦,/
Different Cell Types of the Hyperthermic Brain	243
II. Intracellular Targeting of Neural Heat Shock mRNAs	245
III. Cell Type Differences in Neural Heat Shock Proteins	245
IV. Expression of Heat Shock Proteins in the	
Developing Brain	247
V. Activation of Neural Heat Shock Transcription	
Factor HSF1	247
VI. In Vivo Transcription Rate of Heat Shock Genes	
in the Brain	248
VII. Neuroprotective Effect of Heat Shock Protein	2.40
in the Retina	249
VIII. Conclusions	249
C. Cellular Stress Gene Response to Focal	249
Cerebral Ischemia	249 249
II. Hsp32 (HO-1) Spreading Depression Mediated	£#7
Induction in Microglia	251
III. Hsp27 Spreading Depression Mediated Induction in	
Actropytes	252

IV. Glucose Transporters/grp75/grp78: HIF Mediated	
Induction	253
V. Conclusions	253
D. Cellular Stress Gene Response to	
Subarachnoid Hemorrhage	254
I. Clinical Syndrome of Subarachnoid Hemorrhage	254
and the Role of HO	254
II. Induction of HO-1 Following Experimental Subarachnoid	~
Hemorrhage	255
III. Induction of HO-1 Following Subarachnoid Injections of	251
Hemoglobin and Protoporphyrins	256
IV. Model for Metabolism of Heme by Microglia, Neurons	
and Meningeal Cells Following Subarachnoid	250
Hemorrhage	258
References	258
CHAPTED 12	
CHAPTER 12	
Heat Stress Proteins and Their Relationship to Myocardial Protection	
R. CARROLL and D.M. YELLON	265
A. Introduction	265
B. Heat Stress and the Stress Response	265
C. Are Stress Proteins Protective?	266
D. Evidence for the Ability of Stress Proteins	-00
To Protect the Cell	266
I. Thermotolerance	266
II. Cross-tolerance	267
III. Stress Proteins and the Heart	268
IV. Heat Stress and Myocardial Protection	268
V. Heat Stress Proteins and Ischaemic Preconditioning	271
VI. Heat Stress and Protection Against Non-ischaemic	
Injury	272
VII. Mechanisms of Cardiac Protection by	
Elevated Temperature	273
E. Conclusions	274
References	275
CHAPTER 13	
Heat Shock Proteins in Inflammation and Immunity	
M. Bachelet, G. Multhoff, M. Vignola, K. Himeno and B.S. Polla	
With 4 Figures	281
	201
A. Introduction: Multiple Roles of Heat Shock Proteins in	
Inflammation and Immunity	28
B. Role of Hsp Localization in the Induction of an Immune Response	**
minimie ivendonse	281

C. Hsp and Cell Adhesion in the Initiation of Inflammation	284
D. Non-specific Immunity: Cells and Mediators Involved in	
the Induction of a Heat Shock/Stress Response	286
I. Monocytes-Macrophages	286
1. Reactive Oxygen Species	286
2. Lipid Mediators of Inflammation	287
3. Cytokines	288
4. Nuclear Factor κB (NF-κB)	289
II. Granulocytic Phagocytes	289
1. Polymorphonuclear Leukocytes (PMN)	289
2. Eosinophils	290
E. Cellular Immunity	290
I. T Cells	291
II. $\gamma \delta$ T Cells	292
III. Hsp, NK Cells and Cancer Immunity	294
F. The Paradigm of Asthma	295
G. Conclusions and Perspectives	298
References	298
CHAPTER 14	
Heat Shock Proteins in Embryonic Development	205
M. Morange	305
A. Introduction	305
B. Specific Expression of Hsps During <i>Drosophila</i>	
Development	307
C. Essential Roles of Hsps During Development	309
I. Mammalian Small Hsp: A "Checkpoint" Between	•
Proliferation, Differentiation and Cell Death	309
II. Hsp90 and the Control of Muscle Cell Differentiation	,
Through the Regulation of Myogenic	
Transcription Factors	312
	312
III. Hsp70–2: A Specialized Chaperone Essential for	313
Meiosis	213
D. Mechanisms Regulating the Expression of Hsps During	211
Differentiation and Development	314
E. In Search of Additional Developmental Chaperones	316
F. The Place of Hsps in Aging	317
G. Conclusion	319
References	319
CHARTER 15	
CHAPTER 15	
Heat Shock Proteins in Rheumatoid Arthritis W. VAN EDEN	329
	4 76 1

XX Contents

۸	Introduction	329
A. D	Autoimmune Arthritis and Immunity to Bacterial Antigens	330
р. С	Hsp60 Is the Critical Antigen in Rat Adjuvant Arthritis	333
D.	Nasal Tolerance to hsp Peptides Suppresses Antigen and	
D.	Non-Antigen Induced Arthritis	335
Е	Conserved hsp60 Epitopes Induce Arthritis Suppressive	
L.	T Cells	335
С	Suppression in Arthritis Models Is Specific for	
Г.	Heat Shock Proteins	336
_	Immune Mediated Diseases	337
	Rheumatoid Arthritis as a Model Autoimmune Disease	337
	Hsps in Autoimmune and Other Inflammatory Diseases	338
I.	Hsps in Human Arthritic Diseases	339
J.	Hsp60 T Cell Responses in RA and JRA Are Associated with	337
K.		340
1	Suppressive Cytokine Production	340
L.	Mechanisms by Which hsps Produce Protection in	341
	Autoimmune Arthritis	341
M	. Lessons for the Development of Specific Immunotherapy in	2.42
	Autoimmunity	342
	Conclusion	343
Re	eferences	344
Н	HAPTER 16 eat Shock Protein 60 and Type I Diabetes	
S.	G. Newton and D.M. Altmann	347
Α	. Introduction	347
	Hsp60 and Autoimmune Diseases	348
	Hsp60 Reactivity and the NOD Mouse Model of	
٠.	Type I Diabetes	349
D	. Cell Types Required for Diabetogenesis in Patients	351
E	Islet Cell Antibody Responses	352
F	Autoreactive T Cell Responses	353
G	T Cell Clones of Unknown Antigen Specificity	355
Н	Evidence from Suppression of Specific T Cell Responses in	333
• •	NOD Mice	355
	I. Concluding Remarks	357 357
P	eferences	
1	eferences	358
C	HARTED 17	
	HAPTER 17	
Н	eat Shock Proteins and Multiple Sclerosis	
G	RISTORI, C. MONTESPERELLI, D. KOVACS, G. BORSELLINO,	
L	. Battistini, C. Buttinelli, C. Pozzilli, C. Mattei and	
N	1. Salvetti. With 3 Figures	363

Contents	XXI
----------	-----

A. Introduction B. Hsp Expression in Inflammatory, Demyelinating Diseases	363
of the Brain	365 365 366 367
C. Immune Response to Hsps	368 371 372
D. Other Roles of Hsps in MS E. Conclusions and Future Work References	374 376 377
CHAPTER 18	
Heat Shock Proteins in Atherosclerosis	
A.D. Johnson	381
A. Introduction	381 381
C. Arterial Hsp Expression After Vascular Injury and During Development of Atherosclerotic Lesions	382
D. Association of Hsps with Specific Stages of	502
Atherosclerotic Lesion Development	383
I. Hsps in Hypertension, a Risk Factor for	202
Atherosclerosis	383 385
T-Lymphocyte Activation by Hsp60 in Atherosclerotic Vessels	386
2. Do Anti-Hsp60 Antibodies Contribute to Necrotic Core Formation?	388
3. Biphasic Effects of Hsp Expression in Organ Transplantation: Tissue Preservation Versus Graft	,,00
Arteriosclerosis III. Hsps in the Mature Atherosclerotic Plaque 1. Induction of Hsp Expression by oxLDL 2. The Stress Response and Plaque Cell Survival Versus Necrosis	389 390 390 392
E. Future Directions	395 396
CHAPTER 19	
Heat Shock Protein-Peptide Interaction: Basis for a New Generation of Vaccines Against Cancers and Intracellular Infections P.K. Srivastava	403

Contents

A. Introduction	403
B. Hsps Chaperone Antigenic Peptides	405
C. Unique Advantages of Hsp-Peptide Vaccines	406
D. Use of Hsp-Peptide Complexes as Cancer Vaccines	407
E. Protective Human Cancer Antigens: Unique to Each Individual	
Cancer or Shared Between Cancers?	409
F. Hsp-Peptide Complexes as Vaccines Against Intracellular	
Infectious Agents	411
References	412
Subject Index	415