Contents

Part I Torsion Stresses in Ships

1	Torsi	on Stress	es in Ships	3		
	1.1		ction	3		
	1.2	Loading of Beam Elements	3			
		1.2.1	Direct Torsion Loads	3		
		1.2.2	Induced Torsion Load	3		
	1.3	Variatio	on of Torque and Angle of Twist along			
		Beam Length				
		1.3.1	Beams Subjected to Concentrated Torques	4		
		1.3.2	Beams Subjected to Uniformly Distributed			
			Torsion Loading	5		
	1.4	Torsion	of Uniform Thin Walled Sections	6		
		1.4.1	Pure Torsion of Uniform Open			
			Thin-Walled Girders	6		
	1.5	Torsion	of Uniform Thin-Walled Closed Sections	9		
	1.6	Closed Sections.				
		1.6.1	Shear Flow and Stress	10		
		1.6.2	Rate of Twist	11		
	1.7	Torsion	of a Uniform Thin-Walled Tube	12		
		1.7.1	Angle of Twist	12		
		1.7.2	Torsion Shear Stress	13		
	1.8	Comparison between Open and Closed				
		Thin-W	alled Sections	16		
		1.8.1	Circular Section	16		
		1.8.2	Square Section	18		
	1.9	Torsion	Constant of Uniform Thin-Walled Closed Sections			
		with At	tached Open Sections	19		

2	Tore	ion Strocc	es in Thin-Walled Multi-Cell Box-Girders	21		
-	2.1		of Uniform Thin-Walled Two-Cell Box-Girders	21		
	2.2		eneral Case of a Uniform Two-Cell Box Girder	26		
	2.2		Stresses in a Two Identical Cells Box-Girder	29		
	2.5	2.3.1	Shear Flow q	29		
		2.3.1	Shear Stress τ	29		
		2.3.3	Rate of Twist θ	30		
	2.4		of Three-Cell Box-Girder	30		
	2.4	Torsion of Uniform Thin-Walled Multi-Cell Box-Girder 3				
	2.5					
	2.0	2.6.1	Combined Open Section with One Closed Cell	34 34		
		2.6.2	Combined Open Section with Two Closed Cells	35		
		2.0.2	Combined Open Section with Two Closed Cens	33		
3	Tors	ion Warr	ing Deformations and Stresses	41		
•	3.1		n of Thin-Walled Variable Section Beams	41		
	5.1	3.1.1	Free Warping	41		
		3.1.2	Constrained Warping	41		
		3.1.3	Warping of Thin-Walled Sections	43		
		3.1.4	Flexural Warping Stresses	46		
		3.1.4	Development of the General Equation of Torsion	47		
		3.1.5	Solution of the Torsion Equation	54		
		5.1.0		54		
4	Tors	rsion of Container Ships				
	4.1	Torsior	Loading on Ships	65		
	4.2	Torsion Loading of Open-Decked Ships.				
	4.3	Torsion Loading on Catamaran Vessels				
	4.4		g Deformations and Stresses in the Deck			
		Structu	re of Container Ships	72		
	4.5		al Deformation of Ship Hull Girder	72		
	4.6		proximate Method for Torsion Analysis			
			n Deck Vessels	74		
	4.7	Calculation of the Shear and Flexural Warping Stresses 7				
	4.8		n of the Torsion Equation	75		
	. –	4.8.1	Boundary Conditions	75		
		4.8.2	Distribution of Torsional Loading	76		
		4.8.3	Solution of the Torsion Equation			
			for Constrained Warping	77		
		4.8.4	Calculation of the Sectorial Properties	, ,		
		7.0.7	of Ship Section	78		
			or omp occuoit	10		

	4.9	Total Stress in the Deck Plating of Container Ships due to			
		Hull Gird	der Bending and Torsional Loading	85	
		4.9.1	Hull Girder Stresses due to Vertical Bending	86	
		4.9.2	Horizontal Hull Girder Bending Stresses	87	
		4.9.3	Local Stresses	87	
		4.9.4	Flexural Warping Stresses	88	
		4.9.5	Total Stress Over the Deck Plating	89	
5	Sector	ial Prope	rties of Thin-Walled Open Sections	91	
	5.1	-	ion	91	
	5.2		Properties of Thin-Walled Sections	91	
		5.2.1	Principal Sectorial Properties		
			of Thin-Walled Sections.	93	
		5.2.2	Position of the Shear Center	94	
		5.2.3	Sectorial Area Diagram	95	
		5.2.4	Procedure of Calculation	96	
	5.3		ons to Some Typical Sections	96	
	0.0	5.3.1	Sectorial Properties for Thin-Walled	10	
			Sections Free to Warp	96	
	5.4	Sectorial	Properties for a Thin-Walled Section with		
			ced Axis of Rotation	101	
		5.4.1	A thin-Walled T-Section with an Enforced		
			Axis of Rotation	101	
		5.4.2	Enforced Center of Rotation for a		
		55	Thin-Walled Angle Section.	102	
		5.4.3	Enforced Center of Rotation at a Point C		
		5.1.5	on the Opposite Side of a Thin-Walled		
			Asymmetrical Fabricated Section.	102	
				102	
6	Comon	-l colution	n of the torsion equation	105	
0	Genera	ai solutioi		105	
Par	t II Sł	near Load	ling and Stresses in Ships		
7	Shear		n Thin-Walled Structures	111	
	7.1		nciples	111	
	7.2	Shear Str	resses in Beams due to Bending	111	
		7.2.1	Solid Beams	111	
		7.2.2	Average Shear Stress	114	
		7.2.3	Shear Flow and Stress in Thin-Walled Sections	115	
	7.3	Shear Ce	ntre	124	

	7.4	Shear Deflection	127		
		7.4.1 Shear Deformation	129		
	7.5	Shear Lag	130		
8	Shear	Flow and Stresses in Thin-Walled Box-Girders	133		
	8.1	Single Cell Box-Girder	133		
	8.2	Shear Flow in Asymmetrical Closed Box-Girders			
		Subjected to a Vertical Shear Force F	135		
	8.3	Shear Stresses in Thin-Walled Two-Cell Box-Girders	142		
	8.4	Calculation of the Correcting Shear Flow for 3-Cell			
		Box-Girders Subjected to Shear Load	146		
9	Shear	· Flow and Stresses in Ships	149		
	9.1	Introduction	149		
	9.2	Procedure of Calculation of Shear Flow Distribution	149		
		9.2.1 Ship Section Idealization	149		
	9.3	Determination of the Effective Thickness	157		
	9.4	Shear Flow Calculation	157		
		9.4.1 Procedure of Calculation of Shear Flow Distribution	158		
		9.4.2 Shear Flow Distribution over a Ship Section			
		of a Two-deck Cargo Ship	160		
	9.5	Calculation of Shear Stress Distribution	161		
		9.5.1 Equivalent Stress	161		
	9.6	Calculation of Shear Stress Distribution over a Ship Section	162		
		9.6.1 Calculation of Shear Flow Distribution			
		over a Twin DeckCargo Ship	163		
	9.7	Shear Flow Distribution over a Catamaran Section	164		
10	Calcu	lation of Shear Stresses in Tankers Subjected			
		Longitudinal Vertical Shear Forces.			
	10.1	Coastal Tankers Having One Longitudinal Bulkhead	167		
	10.2	Calculation of Shear Flow Distribution for			
		Twin Longitudinal Bulkhead Tankers	169		
	10.3	Shear Load Carried by Longitudinal Bulkheads			
		and Side Shell Plating	173		
		10.3.1 Sea-Going Tankers with Two Longitudinal			
		Bulkheads	173		
		10.3.2 Coastal Tankers with One Longitudinal Bulkhead	175		
	10.4	Shear Flow Distribution Over a Ship Section of an Oil Tanker			
		Experiencing a Local Damage in the Shell Plating			
		or Longitudinal Bulkhead.	176		
		10.4.1 Introduction	176		

		10.4.2	Shear Stress Distribution Over a Tanker Section		
			Experiencing a Local Damage	177	
		10.4.3	Scenarios of Assumed Damage Locations		
			on the Tanker Section	177	
11	Shear	Loading	and Stresses in Bulk Carriers	187	
	11.1		tion	187	
	11.2		al Configuration	187	
		11.2.1	Upper and Lower Stools of Transverse Bulkheads	188	
		11.2.2	Double Bottom Structure	189	
	11.3	Hull Gir	der Loading	189	
	11.4		linal Vertical Shearing Force	190	
		11.4.1	Stillwater Component (FS)	191	
	11.5	Wave-In	duced Component (FW)	195	
		11.5.1	The Distribution of the Largest Expected Vertical		
			Wave-Induced Shearing Force.	197	
	11.6	Dynamic	c Component (<i>FD</i>)	198	
	11.7		ertical Shearing Force F	200	
	11.8		mate Value to the Maximum Vertical Shear Force	201	
	11.9	Variation of Various Shear Stress Components with Time 2			
	11.10	Shear Fl	ow Distribution in Bulk Carriers	202	
		11.10.1	Structure Idealization	202	
		11.10.2	Effective Thickness	203	
		11.10.3	Shear Flow Distribution	204	
		11.10.4	Shear Stress Distribution	205	
		11.10.5	Shear Flow Distribution Over the Hopper Tank	205	
		11.10.6	Shear Flow Distribution Over the Top Wing Tanks	207	

Part III Programming Implementation

12	Programming Implementation							
	12.1	Introduction	213					
	12.2	Program List.	214					
	12.3	12.3	Solved Problems	258				
13	Proble	ms	265					
Ref	erences		273					
Ind	ex		275					
cv	of the	Author	277					