

Nitric Oxide

Contributors

J.-L. Balligand, T.R. Billiar, C. Bogdan, B. Brüne, H. Bult,
V. Burkart, R. Busse, A. Costa, T.M. Dawson, V.L. Dawson,
V.J. Dzau, M.G. Espey, K. Falke, M. Feelisch, I. Fleming,
U. Förstermann, A. Friebel, J. Fukuto, J. Garthwaite, H. Gerlach,
S. Ghosh, M.B. Grisham, A.B. Grossman, E. Hackenthal,
D. Keh, M.M. Kockx, D. Koesling, G. Kojda, H. Kolb,
P.A. MacCarthy, W. Martin, K.E. Matthys, L. McNaughton,
K.M. Miranda, J.B. Mitchell, S. Moncada, P. Navarra,
J. Parkinson, A. Radomski, M.W. Radomski, D. Rees,
K. Sandau, M. Sasaki, G. Sawicki, H.H.H.W. Schmidt,
A.M. Shah, D.J. Stuehr, P. Vallance, H.E. von der Leyen,
A. von Knethen, E.R. Werner, D.A. Wink, R. Zamora

Editor

B. Mayer

Springer

Contents

Introduction

S. MONCADA	1
------------------	---

Section I: Chemistry

CHAPTER 1

The Chemical Biology of Nitric Oxide. Balancing Nitric Oxide with Oxidative and Nitrosative Stress

D.A. WINK, K.M. MIRANDA, M.G. ESPEY, J.B. MITCHELL, M.B. GRISHAM, J. FUKUTO, and M. FEELISCH. With 8 Figures	7
A. Introduction	7
B. Direct Effects	9
I. Reactions Between NO and Metal Complexes	9
II. Interaction of NO with Metal–Oxygen and Metal–Oxo Complexes	11
III. The Reaction of NO with Radical Species	13
C. Indirect Effects	14
D. Nitrosative Stress	15
E. Oxidative Stress	18
F. NO/O ₂ [–] Chemistry	21
G. Conclusion	23
References	24

Section II: Biochemistry and Pharmacology of NO Synthesis and Action

CHAPTER 2

Enzymology of Nitric Oxide Synthases

D.J. STUEHR and S. GHOSH. With 14 Figures	33
A. Introduction	33
B. NOS Structure–Function	33
I. Domain Organization	33

II. NOS Oxygenase Domains and Mutagenesis	35
1. Arg-Binding Site	36
2. H ₄ biopterin-Binding Site	38
3. N-Terminal Hairpin Loop	41
4. NOS Cysteines and Metal Binding	42
III. NOS Reductase Domains	43
1. General Features	43
2. Catalytic Properties and Response to CaM	44
3. Mutagenesis	45
IV. CaM Activation of NOS	47
1. Mechanism of Action	47
2. Structural Determinants of CaM Binding	47
V. NOS Domain Interactions	48
C. Catalysis of NO Synthesis from L-Arg	49
1. Heme-NO Complex Formation	49
1. NOS Partitioning into an NO-Bound Form During Catalysis	49
2. Impact of NO Complex Formation on NOS Catalysis	49
3. The NO Complex and NOS O ₂ Response	50
II. The Active Catalytic Cycle	51
1. Steps involved, O ₂ , Binding and Activation	51
2. NOS Heme Iron Reduction	52
3. Control of Heme Reduction by H ₄ B and Arg	53
III. Enzyme Structural Features that may Impact on NO Synthesis	54
IV. Roles for Heme and H ₄ B	56
D. Control Mechanisms and Targeting	58
I. NOS Dimerization	58
1. Stepwise Assembly Mechanism	58
2. Positive and Negative Regulation	59
II. Is NOS Oxygenase Domain Structure Modified by Dimerization, H ₄ B Binding, or Both?	59
III. Another Type of NO Inhibition	60
IV. Interactions Between NOS and Other Proteins	60
1. PDZ, PIN	60
2. Caveolins	61
3. Heat Shock Proteins	62
4. Kalirin	62
References	62

CHAPTER 3

Regulation of Nitric Oxide Synthase Expression and Activity

U. FÖRSTERMANN

71

A. Introduction	71
B. Nitric Oxide Synthase I	73
I. Cellular Expression of NOS-I	73
II. Regulation of NOS-I Expression	73
III. Regulation of NOS-I Activity	74
C. Nitric Oxide Synthase II	75
I. Cellular Expression of NOS-II	75
II. Regulation of NOS-II Expression	75
III. Regulation of NOS-II Activity	78
D. Nitric Oxide Synthase III	79
I. Cellular Expression of NOS-III	79
II. Regulation of NOS-III Expression	79
III. Regulation of NOS-III Activity	81
E. Summary and Conclusions	82
References	83

CHAPTER 4

Enzymology of Soluble Guanylyl Cyclase

D. KOESLING and A. FRIEBE. With 4 Figures	93
A. Introduction	93
B. Regulation of sGC	94
I. NO, the Physiological Activator of sGC	94
II. Mechanism of Activation of sGC by NO	96
III. Termination of the NO-Induced Activation	96
IV. CO: a Physiological Activator of sGC?	98
V. Redox Regulation of sGC?	98
VI. Modulators of sGC	99
1. ODQ: An Inhibitor of the Stimulated Activity of sGC	99
2. YC-1: A Novel Activator of sGC	99
C. Structure of sGC	101
I. Isoforms and Tissue Distribution	101
II. Primary Structure and Homology among the Subunits of sGC	102
III. The Regulatory Heme-Binding Domain	102
IV. Catalytic Domain	103
D. Conclusions	105
References	105

CHAPTER 5

Nitric Oxide Synthase Inhibitors I:

Substrate Analogs and Heme Ligands

J.F. PARKINSON. With 4 Figures	111
--------------------------------------	-----

A. Introduction	111
I. Therapeutic Concepts for NOS Inhibitors	111
II. NOS-Knockout Mice	112
B. Mechanism-Based NOS Inhibitors	114
I. Substrate-Based NOS Inhibitors	114
1. Arginine Analogs	114
2. Amidine-Containing Inhibitors	119
3. Summary for Substrate Analogs	124
II. Heme Ligands	124
1. Summary for Heme Ligands	127
III. Towards Rational Design of NOS Inhibitors	127
References	129

CHAPTER 6

Nitric-Oxide-Synthase Inhibitors II – Pterin Antagonists/

Anti-Pterins

E.R. WERNER and H.H.H.W. SCHMIDT. With 6 Figures	137
A. Introduction	137
B. H ₄ B Dependence of the NOS Reaction	137
I. NOS-Associated H ₄ B	138
II. Allosteric and Stabilising Effects	138
III. Possible Electron-Transfer Role	138
IV. The Pterin-Binding Site	140
C. Pterin-Based Inhibition OF NOS	140
I. Manipulating Intracellular H ₄ B Levels	140
II. Approaches to Pterin Antagonists	141
III. 4-Amino-H ₄ B	142
1. Effects of 4-Amino-H ₄ B on Purified Enzymes	142
2. Effects of 4-Amino-H ₄ B on Cultured Cells	144
3. Effects of 4-Amino-H ₄ B in Animals	144
IV. Further 4-Aminopteridines	145
1. The 4-Amino Function	145
2. The 2, 5 and 7 Positions	145
3. The C6 Side Chain and Pterin Exosite	147
4. Conclusion	149
V. 4-Oxopteridines as Inhibitors of NOS	149
1. Specificity and the Anti-Pterin-Binding Domain	151
2. Type-I and -II Anti-Pterins	151
3. 4-Oxo Anti-Pterins in Intact Cells	153
4. Conclusions	153
D. Outlook	154
References	155

CHAPTER 7

Mechanisms of Cellular Resistance Against Nitric Oxide

B. BRÜNE, ANDREAS VON KNETHEN, and K. SANDAU.

With 3 Figures	159
A. Introduction	159
I. Cell Death: Apoptosis Versus Necrosis	159
II. NO: Formation and Signaling	161
B. Cytotoxicity of Nitric Oxide	161
I. NO-Mediated Cytotoxicity/Apoptosis	161
II. Apoptotic-Signal Transduction: p53 Accumulation and Caspase Activation	162
C. Resistance Against NO [•] -Mediated Toxicity	164
I. Antagonism by Bcl-2-Family Members	164
II. Protection by NO [•] and O ₂ [•] Co-Generation	164
III. Protective Protein Expression	166
IV. cGMP Formation and Protein Thiol Modification	167
D. Conclusions	169
References	171

Section III: Physiological Functions of NO

CHAPTER 8

Nitric Oxide and Regulation of Vascular Tone

R. BUSSE and I. FLEMING. With 3 Figures	179
A. Regulation of Vascular Tone	179
B. Endothelial Nitric Oxide Synthase	180
I. Ca ²⁺ -Dependent eNOS Activation	181
1. The Interaction of eNOS with CaM	181
2. The Interaction of eNOS with Caveolin-1	182
3. Other Modulators of eNOS Activity	183
a) Endothelial NOS-Associated Protein-1	183
b) Hsp90	183
c) Phosphorylation	184
II. Ca ²⁺ -Independent eNOS Activation	185
III. The Link Between Fluid Shear Stress and NO Production	186
C. Mechanisms of Action of NO on Vascular Smooth Muscle	187
I. Effects of NO on [Ca ²⁺]	187
II. Effects of NO on Cyclic Nucleotide Phosphodiesterase	
III	189

III. Effects of NO on Other Systems Involved in the Control of Vascular Tone	190
1. Endothelin-1	190
2. Noradrenaline	190
3. NO and Iron-Containing Proteins	191
4. NO and Mitochondrial Respiration	191
IV. Dinitrosyl Iron Complexes, Nitrosothiol-Containing Proteins and Vascular Tone	192
D. NO and the Control of Blood Flow	193
I. Interaction between NO and O ₂ ⁻	195
II. NO and 20-HETE	197
References	198

CHAPTER 9

Regulation of Cardiac Function by Nitric Oxide

J.-L. BALLIGAND. With 1 Figure	207
A. Introduction	207
B. Specifics on Cardiac NOS Biology	207
I. Which Isoform(s)?	207
II. How are they Regulated?	209
1. Endothelial Nitric Oxide Synthase	209
a) Expressional Control	209
b) Acute Regulation of Activity	210
α. Mechanical Forces	210
β. Beating Rate	210
γ. β-Adrenergic Agonists	211
δ. Muscarinic Cholinergic Agonists	211
ε. Acute Effect of Cytokines	212
2. Inducible Nitric Oxide Synthase	213
a) Expressional Control	213
b) Acute Regulation of Activity	213
C. Intracellular Mechanisms of Action of NO in Cardiac Muscle Cells	214
I. Cyclic GMP-Dependent Mechanisms	214
1. Contraction-Enhancing Mechanisms	214
2. Contraction-Decreasing Mechanisms	217
II. Cyclic GMP-Independent Mechanisms	218
1. Contraction-Enhancing Mechanisms	218
2. Contraction-Decreasing Mechanisms	218
D. Regulation of Cardiac Function by eNOS	219
I. Basal Systolic and Diastolic Function	219
II. Regulation of β-Adrenergic Response	220
III. Regulation of Muscarinic Cholinergic Response	221

E. Regulation of Cardiac Function by iNOS	222
I. Basal Contractile Function	223
II. Regulation of β -Adrenergic Response	224
III. iNOS and Cardiomyocyte Biology	224
F. Conclusion and Perspectives	225
References	226

CHAPTER 10

Regulation of Platelet Function

L. MCNAUGHTON, A. RADOMSKI, G. SAWICKI, and M.W. RADOMSKI	235
A. Introduction	235
I. Platelet Rheology	235
II. Platelet Control	235
B. Nitric Oxide	236
I. NO in Platelets: the Quest	236
II. Molecular Biology of Platelet NOS	236
III. Regulation of NO Generation in Platelet	
Microenvironment	237
1. Cell Activation	237
2. Role of Substrate	238
3. Role of Co-Factors	238
4. Rheology	238
IV. Physiological Effects of NO on Platelets	238
1. Effects of NO on Platelet Function In Vitro	238
2. Effects of NO on Platelet Function In Vivo	239
3. NO in Synergistic Regulation of Platelet Function	239
V. The Mechanisms of NO Action on Platelets	239
C. The Role of NO in the Pathogenesis of Vascular Disorders	
Associated with Platelet Activation	241
I. Pathomechanism	241
II. Atherosclerosis, Thrombosis and Hypertension	242
III. Diabetes Mellitus and Stress	242
IV. Pre-Eclampsia	243
V. Septicaemia	243
VI. Uraemia	244
VII. Cancer	244
D. Pharmacological Modulation of Formation and Action of NO	
on Platelets	244
I. L-Arginine	244
II. Stimulators of NOS	245
III. Inhibitors of NOS and NO Scavengers	245
IV. NO Gas	246
V. NO Donors	246

VI. Novel NO Donors	248
VII. NO-Independent Activators of GC-S	249
E. Conclusions	249
References	249

CHAPTER 11

The Physiological Roles of Nitric Oxide in the Central Nervous System

J. GARTHWAITE	259
A. Introduction	259
B. Acute Actions of NO	261
I. Synaptic Transmission	261
II. Gap Junctions	263
III. Local Cerebral Blood Flow	264
IV. Glial Cells	265
C. NO and Synaptic Plasticity	266
I. Short-Term Plasticity	266
II. Long-Term Potentiation	267
III. Long-Term Depression	268
D. NO and Developmental Plasticity	268
E. Concluding Remarks	270
References	270

CHAPTER 12

The Role of Nitric Oxide in the Peripheral Nervous System

W. MARTIN	277
A. Introduction	277
I. Nomenclature	277
II. Historical Perspective	277
III. The Concept of Non-Adrenergic, Non-Cholinergic Neurotransmission	278
IV. The Concept of Nitrergic Nerves	279
B. Properties of Nitrergic Nerves	281
I. Properties of nNOS	281
II. Localisation of nNOS in Nitrergic Nerves	281
III. Anatomical Distribution and Physiological Functions of Nitrergic Nerves	282
IV. Unitary Transmission, Dual Transmission and Co-Transmission	283
C. Nature of the Nitrergic Neurotransmitter	284
I. Predicted Differences in the Effects of Drugs on Nerve-Derived and Bath-Applied NO	285

II. Evidence that the Nitrergic Neurotransmitter is a NO-Like or NO-Releasing Molecule	285
III. Evidence that NO is the Nitrergic Neurotransmitter and is Protected from Inactivation	287
D. Pre-Junctional Mechanisms	289
I. Activation of Nitrergic Nerves	289
II. Role of Ca^{2+} in Activation of Nitrergic Nerves	289
III. Pre-Junctional Augmentation of Nitrergic Transmission	290
IV. Blockade of Nitrergic Transmission by Inhibition of NOS	291
E. Nerve–Nerve Interactions	293
I. Nitrergic–Adrenergic Interactions	293
II. Nitrergic–Cholinergic Interactions	293
III. Nitrergic–NANC Interactions	294
F. Junctional and Post-Junctional Mechanisms	295
I. Scavengers of NO	295
II. Blockade of Soluble Guanylate Cyclase	295
III. Post-Junctional Potentiation of Nitrergic Transmission	296
G. Post-Junctional Transduction Pathway	297
I. Role of Cyclic GMP	297
II. Inhibition of Calcium Mobilisation	297
III. Role of Membrane Hyperpolarisation	298
H. Concluding Remarks	299
References	299

CHAPTER 13

Nitric Oxide and Neuroendocrine Function

P. NAVARRA, A. COSTA, and A. GROSSMAN. With 4 Figures	315
A. Introduction	315
B. NO Biosynthesis in the Hypothalamus: Relationship Between Localization and Function	315
C. Physiology of Hypothalamic NO	317
I. Vasopressin and Oxytocin	317
II. Corticotrophin-Releasing Hormone and the Hypothalamo–Pituitary–Adrenal Axis	318
III. Hypothalamo–Pituitary–Gonadal Axis	320
IV. Other Hormonal Systems	322
References	323

CHAPTER 14

The Role of Nitric Oxide in Kidney Function

E. HACKENTHAL. With 6 Figures	329
A. Introduction	329
B. Nitric Oxide Synthase Isoforms in the Kidney	329
C. Distribution of NOS in the Kidney	330
I. Distribution of NOS in the Renal Vasculature	330
II. Distribution of NOS in Renal Tubules	331
III. Distribution of NOS in Renal Nerves	333
D. Physiological Roles of NO	333
I. Role of NO in the Regulation of Renal Blood Flow	333
1. Endogenous Mediators of NO Release	333
2. Inhibitors of NOS	334
II. Role of NO in Glomerular Circulation	335
III. Role of NO in Renal Autoregulation	336
1. The Myogenic Response and NO	338
2. NO and Tubuloglomerular Feedback	338
IV. Role of NO in the Control of Medullary Blood Flow and Pressure Natriuresis	341
E. Tubular Functions of NO	342
F. NO, Renin Secretion and Renin Synthesis	343
I. NO as a Stimulator of Renin Secretion	344
II. NO and Pressure Control of Renin Release	344
III. NO, Renal Nerves and Renin Release	347
IV. NO and Macula-Densa-Mediated Renin Secretion	348
V. NO, Prostaglandins and Renin Synthesis	350
G. Concluding Remarks	352
References	353

Section IV: The Role of Pharmacological Action of NO in Human Disease

CHAPTER 15

Therapeutic Importance of Nitrovasodilators

G. KOJDA. With 3 Figures	365
A. Introduction	365
B. Mechanisms of Action	367
C. Hemodynamic Actions	368
I. Preferential Venodilation	368
II. Vessel-Size-Selective Coronary Vasodilation	369
III. Effects on Blood Pressure	370
IV. Other Effects on Hemodynamics	371

V. Effects on Platelets	371
D. Pharmacokinetics	372
E. Clinical Use	373
I. Effects in Stable Angina	373
1. Treatment and Short-Term Prevention of Anginal Attacks	374
2. Long-Term Management of Chronic Stable Angina	374
II. Effects in Unstable Angina	374
III. Effects in Acute Myocardial Infarction	375
IV. Effects in Heart Failure	375
V. Effects in Gastrointestinal Disorders	376
VI. Effects on the Uterus	376
F. Nitrate Tolerance	377
G. Side Effects and Contraindications	378
References	378

CHAPTER 16

Therapeutic Potential of NOS Inhibitors in Septic Shock

P. VALLANCE, D. REES, and S. MONCADA. With 5 Figures	385
A. Introduction	385
B. Clinical Features of Sepsis	385
I. Cardiovascular Changes	386
II. Tissue Oxygenation	386
III. Tissue and Organ Damage	386
C. NO in Experimental Models of Shock	387
I. Cardiovascular Changes	388
II. Tissue Oxygenation	388
III. Tissue and Organ Damage	389
D. NO in Clinical Sepsis	390
I. iNOS Induction in Humans	391
II. Cardiovascular Changes	391
III. Tissue Oxygenation	393
IV. Tissue and Organ Damage	393
E. Outcome Studies	394
F. Conclusions	394
References	395

CHAPTER 17

Inhalation Therapy with Nitric Oxide Gas

D. KEH, H. GERLACH, and K. FALKE. With 7 Figures	399
A. Introduction	399
B. Therapy with NO Gas	400

I. NO Inhalation in ARDS Patients	400
1. Introduction	400
2. Acute Effects of NO Inhalation in Patients with ARDS	401
3. NO Inhalation and Non-Cardiogenic Pulmonary Edema	404
4. Dose–Response Relationship of NO Inhalation	404
5. Effects of NO Inhalation on Right Heart Function	408
6. NO Non-Responders	409
7. NO Dependency	409
8. Recent Studies of NO Inhalation in ARDS	410
II. NO Inhalation in PPHN	412
III. NO Inhalation in Other Diseases	414
IV. NO Autoinhalation	415
C. NO Metabolism, Toxicology, and Adverse Effects	417
I. NO Uptake and Clearance	417
II. NO and Nitrogen Dioxide	417
III. NO, Superoxide, and Peroxynitrite	419
IV. NO and <i>S</i> -Nitrosothiols	422
1. Methemoglobin	422
D. NO Administration	424
I. The NO/Nitrogen Gas Mixture	424
II. Delivery of NO	425
III. Monitoring of NO Inhalation	429
1. Chemiluminescence	429
2. Electrochemical Analyzers	430
References	432

CHAPTER 18

The Function of Nitric Oxide in the Immune System	
C. BOGDAN	443
A. Introduction	443
B. Type-2 NOS (NOS-II, iNOS) and the Immune System	444
I. Cell Types	444
II. Induction and Regulation	444
1. Overview	444
2. Transcriptional Regulation	447
3. Positive and Negative Regulation of NOS-II by Cytokines, Ligand–Receptor Interactions, and Microbial Products	449
a) Cytokines	449
b) Cross-Linking of Cell-Surface Receptors	451
c) Microbial Products	451

III. Functions	453
1. Overview	453
2. Antimicrobial Functions	453
a) Results from Host-Cell-Free Experiments and Studies in Rodents	453
b) NO as an Antimicrobial Molecule in Humans	456
c) Interaction Between NO and Other Antimicrobial Effector Pathways	457
3. Anti-Tumor Function	459
4. Autotoxic Functions	460
5. Regulatory Functions	461
a) Regulation of Proliferation, Apoptosis and Survival, and Cytotoxic Activity of Lymphocytes	462
b) Modulation of Cytokine Responses	463
α . NO and IL-12	465
c) Leukocyte Chemotaxis and Adhesion	466
d) Immune (T-Helper Cell) Deviation	466
C. Other NOS Isoforms and Perspective	467
References	468

CHAPTER 19

Nitric Oxide: A True Inflammatory Mediator

R. ZAMORA and T.R. BILLIAR	493
A. Introduction	493
I. Biosynthesis of NO	493
B. NO and Inflammation	494
I. The Chemical Mediators of the Vascular Response	495
II. NO and the Vascular Response to Injury	496
III. NO in Acute Inflammatory Responses	498
IV. NO and Inflammatory Cytokines	499
V. NO and Arachidonic Acid Metabolites	501
C. NO in Immunity and Chronically Inflammatory Diseases	502
I. NO and the Immune Response	502
II. NO and Chronic Inflammatory Processes	506
III. Induced NO in Antimicrobial Defense Mechanisms	508
D. Conclusions	510
References	511

CHAPTER 20

Nitric Oxide in the Immunopathogenesis of Type 1 Diabetes

V. BURKART and H. KOLB	525
A. Introduction	525

B. Type 1 Diabetes	525
I. Clinical Characteristics	525
II. Studies on the Immunopathogenesis of Type 1 Diabetes	526
III. Cellular Immune Reactions Against Pancreatic Islet Cells	527
C. NO as a Major Pathogenetic Factor in Immune-Mediated Diabetes	528
I. Cellular Sources of β -Cell-Damaging NO	528
1. Macrophages	528
2. Endothelial Cells	529
3. β Cells	529
II. Primary Target Structures of NO in the β Cell	530
1. Mitochondria	530
2. Nuclear DNA	530
III. Pathways of NO-Induced β -Cell Death	531
1. Mitochondrial Damage	531
2. Apoptotic Pathway	531
3. Poly(Adenosine Diphosphate–Ribose)Polymerase-Dependent Pathway	532
D. Open Issues	533
E. Strategies to Protect Islet Cells from NO-Induced Damage	534
I. Suppression of NO Formation	534
II. Improvement of β -Cell Defense Mechanisms	535
III. Inhibition of the PARP-Dependent Pathway	536
IV. Regulation of Th1/Th2 Balance in Islet Inflammation	536
F. Concluding Remarks	537
References	538

CHAPTER 21

The Role of Nitric Oxide in Cardiac Ischaemia–Reperfusion

P.A. MACCARTHY and A.M. SHAH. With 2 Figures	545
A. Introduction	545
B. Consequences of Myocardial Ischaemia–Reperfusion	546
C. Interaction Between NO and ROS	547
D. Potential Ways in Which NO and ONOO [–] May Influence Myocardial Ischaemia–Reperfusion	547
I. Changes in Coronary Blood Flow and Vessel–Blood Cell Interactions	550
II. Direct Effects of NO and ONOO [–] on Myocardium	550
E. Experimental Studies	551
I. Post-Ischaemic Endothelial Dysfunction	551
II. Myocardial Function	552

1. NO as a Beneficial Agent	552
a) Post-Ischaemic Contractile Function	552
α . Buffer-Perfused Preparations	556
β . Blood/Neutrophil-Perfused Preparations	557
b) Myocardial Infarction	557
c) Reperfusion-Induced Arrhythmia	558
2. NO as a Deleterious Agent	559
F. Reasons for Conflicting Experimental Results	561
G. NO and Ischaemic Preconditioning	562
H. Summary and Conclusions	563
References	564

CHAPTER 22

Nitric Oxide and Atherosclerosis

H. BULT, K. E. MATTHYS, and M.M. KOCKX	571
A. Introduction	571
B. Stages of Intimal Thickening and Atherosclerosis	571
I. The Physiological Intima: the Soil for Atherosclerosis	571
II. Successive Stages of Atherosclerosis	572
III. Accelerated Atherosclerosis	572
C. Pathogenic Mechanisms	573
I. The Initiation of Atherosclerosis	573
II. Remodeling of the Artery	574
III. Plaque Stability	575
D. Dysfunction of eNOS Signaling in Atherosclerosis	575
I. Impaired Relaxation in Isolated Arteries	575
II. In vivo Studies of the eNOS Defect in Atherosclerotic Arteries	576
III. The Systemic Nature of the Defective eNOS Signaling	576
E. Explanations for the Defective eNOS-Signaling Pathway	577
I. Endothelial Receptor Dysfunction	577
II. Expression of eNOS mRNA and Protein	578
III. THB Deficiency	579
IV. Arginine Availability	579
1. Conduit Arteries with Atherosclerosis	579
2. Conduit Arteries Without Overt Atherosclerosis	580
3. Arterioles Without Overt Atherosclerosis	580
4. Possible Explanations for the Arginine Paradox	580
V. Endogenous NOS Antagonists	581
VI. Negative Feedback by NO Derived from iNOS	582
VII. Superoxide Anion Inactivates NO	582
F. Expression of iNOS	584
I. iNOS Expression in Atherosclerosis	584

II. Mechanical Injury and iNOS Expression	585
G. NO: a Radical with Anti-Atherogenic Properties	585
I. In Vitro Studies	585
1. Interference with Oxidative Processes	585
2. Maintenance of Endothelial Barrier Function	587
3. Interference with Leukocyte Recruitment	587
4. Antiproliferative Action of NO	587
5. Antiplatelet Effects of NO	588
II. In Vivo Studies	588
1. Inhibition of Experimental Atherosclerosis	588
2. Inhibition of Intimal Thickening by NO	590
a) Neointima Formation after Balloon Denudation	590
b) Intimal Hyperplasia Due to Perivascular Manipulation	591
3. Inhibition of Intimal Hyperplasia in Vein Grafts	592
4. Inhibition of Intimal Hyperplasia Induced by Balloon Angioplasty	592
5. Stimulation of Compensatory Remodeling	592
H. NO: a Radical Promoter of Atherosclerosis	593
I. Peroxynitrite Formation	593
II. LDL Oxidation	594
III. Oxidative Cell Injury	594
IV. NO and Apoptosis	595
1. NO as an Inhibitor of Apoptosis in the Normal Arterial Wall	595
2. NO as an Inducer of Apoptosis	596
a) PARP- and NO-Induced DNA Repair and Apoptosis	596
b) p53/p21 and NO-Induced DNA Repair and Apoptosis	596
3. NO, Apoptosis and Plaque Stability	597
V. Matrix Breakdown	598
I. Summary	598
References	599

CHAPTER 23

Nitric Oxide in Brain Ischemia/Reperfusion Injury

M. SASAKI, T.M. DAWSON, and V.L. DAWSON. With 2 Figures	619
A. Introduction	619
B. Neuronal NOS	619
C. Endothelial NOS	623
D. Immunologic NOS	626
E. The Role of NO in Focal Ischemic Brain Damage	627

F. Targets of NO	629
G. Summary	631
References	631

CHAPTER 24

Therapeutic Potential of Nitric Oxide Synthase Gene Manipulation

H.E. VON DER LEYEN and V.J. DZAU. With 1 Figure	639
A. General Principles of Gene Therapy	639
B. Gain of Function	640
I. Overexpression of the NOS Gene	640
1. Overexpression of Endothelial Constitutive NOS	641
2. Overexpression of Inducible NOS	644
C. Loss of Function	646
I. Inhibition of NOS by Antisense Technology	646
D. Transgenic Animals with Disrupted NOS Gene	647
E. Potential Therapeutic Applications of NOS Gene Transfer	649
References	649
Subject Index	655