Contents

Preface ---- V

1	Vector, metric, normed and Banach spaces —— 1
1.1	Vector spaces —— 1
1.2	Metric spaces —— 24
1.3	Useful inequalities —— 29
1.4	Complete spaces —— 32
1.5	Normed spaces —— 39
1.6	Banach spaces —— 53
1.7	Inner product spaces —— 54
1.8	Hilbert spaces —— 62
1.9	Separable spaces —— 69
1.10	Advanced practical problems —— 70
2	Lebesgue integration —— 73
2.1	Lebesgue outer measure. Measurable sets —— 73
2.2	The Lebesgue measure. The Borel–Cantelli lemma —— 95
2.3	Nonmeasurable sets —— 99
2.4	The Cantor set. The Cantor-Lebesgue function —— 102
2.5	Lebesgue measurable functions —— 107
2.6	The Riemann integral —— 124
2.7	Lebesgue integration —— 125
2.7.1	The Lebesgue integral of a bounded measurable function over a set of
	finite measure —— 125
2.7.2	The Lebesgue integral of a measurable nonnegative function —— 135
2.7.3	The general Lebesgue integral —— 143
2.8	Continuity and differentiability of monotone functions. Lebesgue's
	theorem —— 158
2.9	General measure spaces —— 168
2.10	General measurable functions —— 169
2.11	Integration over general measure spaces —— 171
2.12	Advanced practical problems —— 176
3	The L ^p spaces —— 179
3.1	Definition —— 179
3.2	The inequalities of Hölder and Minkowski —— 180
3.3	Some properties —— 182
3.4	The Riesz-Fischer theorem —— 183
3.5	Separability —— 189

3.6	Duality —— 190
3.7	General L ^p spaces —— 204
3.8	Advanced practical problems —— 207
4	Linear operators —— 209
4.1	Definition —— 209
4.2	Linear operators in normed vector spaces —— 211
4.3	Inverse operators —— 229
4.4	Advanced practical problems —— 233
5	Linear functionals —— 235
5.1	The Hahn-Banach extension theorem —— 235
5.2	The general form of the linear functionals on \mathbf{E}_n in the case $\mathbf{F} = \mathbf{R} - 241$
5.3	The general form of the linear functionals on Hilbert spaces —— 242
5.4	Weak convergence of sequences of functionals —— 244
5.5	Advanced practical problems —— 244
6	Relatively compact sets in metric and normed spaces. Compact operators —— 247
6.1	Definitions. General theorems —— 247
6.2	Criteria for compactness of sets in metric spaces —— 250
6.3	A Criteria for relative compactness in the space $C([a,b])$ — 254
6.4	A Criteria for compactness in the space $L^p([a,b])$, $p>1$ —257
6.5	Compact operators —— 260
6.6	Advanced practical problems —— 263
7	Self-adjoint operators in Hilbert spaces —— 265
7.1	Adjoint operators. Self-adjoint operators —— 265
7.2	Unitary operators —— 266
7.3	Projection operators —— 267
8	The method of the small parameter —— 273
8.1	Abstract functions of a real variable —— 273
8.2	Power series —— 280
8.3	Analytic abstract functions and Taylor's series —— 282
8.4	The method of the smaller parameter —— 286
8.5	An application to integral equations —— 289
9	The parameter continuation method —— 299
9.1	Statement of the basic result —— 299
9.2	An application to a boundary value problem for a class of second order
	ordinary differential equations —— 300

10	Fixed-point theorems and applications —— 309	
10.1	The Banach fixed-point theorem —— 309	
10.2	The Brinciari fixed-point theorem —— 311	
10.3	The Brouwer fixed-point theorem —— 318	
10.4	The Schauder fixed-point theorem —— 320	
10.5	Non-compact Type Krasnosel'skii fixed-point theorems —— 322	
10.6	Fixed-point results for the sum $\mathbb{T} + \mathbb{S} \longrightarrow 325$	
10.7	Fixed-point results to one parameter operator equations and eigenvalues problems —— 338	
10.8	Application to perturbed Volterra integral equation —— 339	
10.9	Application to transport equations —— 344	
10.10	Application to a class of difference equations —— 348	
10.11	Application to a Darboux problem —— 360	
A	Sets and mappings —— 375	
A.1	Union and intersection of sets —— 375	
A.2	Mappings between sets —— 376	
A.3	Countable and uncountable sets —— 379	
A.4	Continuous real-valued functions on a real variable —— 383	
В	Functions of bounded variation —— 385	
Bibliography —— 389		

Index —— 391