Contents

Preface		VII
----------------	--	-----

Introd	luction	1
--------	---------	---

1	Elliptic Equation with p-Laplace Operator and L ¹ -Type of Nonlinearity —— 11
1.1	Auxiliaries and previous analysis of the boundary value problem —— 12
	On Pohozaev inequality and a priori estimates for a special class of weak
1.2	solutions —— 16
1.3	On reformulation of the original optimal control problem —— 25
1.4	Auxiliary fictitious optimal control problem and its properties —— 27
1.5	On a priori estimate for the solutions of variational problem (1.59) —— 29
1.6	On asymptotic behaviour of the sequence of optimal pairs to the problem
	(1.47) - (1.50) as $\varepsilon \to 0$ — 34
2	On Approximation of One Class of Optimal Control Problems for Strongly
	Nonlinear Elliptic Equations with <i>p</i> -Laplace Operator —— 39
2.1	On consistency of optimal control problem —— 40
2.2	Approximating optimal control problems and their previous
	analysis —— 44
2.3	Asymptotic analysis of approximating OCP —— 54
2.4	Optimality conditions for approximating OCP —— 67
3	Neumann Boundary Optimal Control Problem for Strongly Nonlinear Elliptic
	Equation with <i>p-</i> Laplace Operator —— 73
3.1	Setting of the problem —— 74
3.2	A priori estimates both for energy solutions and feasible solutions —— 80
3.3	Existence of optimal boundary controls —— 96
3.4	On approximation of optimal boundary control problem —— 98
3.5	On existence of bounded feasible solutions —— 108
4	Asymptotic Analysis of Optimal Neumann Boundary Control Problem in
	Domain with Boundary Oscillation for Elliptic Equation with Exponential
	Non-Linearity —— 116
4.1	Previous analysis of optimal control problem —— 118
4.2	On consistency of optimal control problem —— 129
4.3	On uniqueness of optimal solution and optimality conditions —— 133
4.4	Description of the domain perturbations —— 141
4.5	Asymptotic analysis of OCP (4.1) – (4.5) — 147

5	On Optimal and Quasi-Optimal Controls in Coefficients for
	Multi-Dimensional Thermistor Problem with Mixed Dirichlet-Neumann
	Boundary Conditions —— 164
5.1	Introduction and main motivation —— 164
5.1.1	Relaxation of the original OCP —— 170
5.1.2	Motivation —— 172
5.1.3	Main results —— 173
5.2	Preliminaries and some auxiliary results —— 174
5.2.1	On Orlicz spaces —— 174
5.2.2	Some special properties of Sobolev-Orlicz spaces —— 179
5.2.3	On the weak convergence of fluxes to flux —— 183
5.3	On approximated optimal control problem in coefficients and its
	properties —— 187
5.4	Asymptotic analysis of OCP (5.19)–(5.23) —— 198
6	Approximation of an Optimal Control Problem in Coefficient for Variational
	Inequality with Anisotropic <i>p</i> -Laplacian —— 211
6.1	Setting of the optimal control problem —— 212
6.2	Existence of optimal solutions —— 216
6.3	Regularization of OCP —— 218
6.4	Asymptotic analysis of approximating OCP —— 222
7	On Unbounded Optimal Controls in Coefficients for Ill-Posed Elliptic
	Dirichlet Boundary Value Problems —— 226
7.1	Notation and preliminaries —— 227
7.2	Weak convergence in variable L^2 -spaces associated with
	\mathbb{S}_{sym}^{N} -matrices —— 233
7.3	Setting of the optimal control problem —— 236
7.4	On variational solutions to OCP (7.1)–(7.3) and their
	approximation —— 244
7.5	On attainability of non-variational optimal solutions —— 261
7.6	On some properties of unbounded bilinear forms associated with
	skew-symmetric $L^2(\Omega)$ -matrices —— 278
7.6.1	Preliminaries —— 279
7.6.2	Motivating example —— 282
7.6.3	On formula of integration by parts for measurable functions —— 287
7.6.4	On substantiation of formula (7.198) for a non-Lipschitz case —— 289
7.6.5	Proof of the uniqueness result —— 290
8	On Optimal L ¹ -Control in Coefficients for Quasi-Linear Dirichlet Boundary Value Problem with BMO-Anisotropic p-Laplacian —— 294
8.1	Notation and preliminaries —— 296

8.2	Setting of the optimal control problem —— 301
8.3	On consistency of optimal control problem (8.28)-(8.31) — 305
8.4	Existence of Optimal Pairs —— 314
8.5	On higher integrability of the gradient of an approximation solution—316
8.6	On density of smooth compactly supported functions in $W_{0,B}^{1,p}(\Omega)$ — 325

Bibliography ---- 331