

TABLE OF CONTENTS

WHY THIS BOOK?—EXECUTIVE SUMMARY	13
WHY WE WROTE THIS BOOK—ABOUT THE AUTHORS	19
Andreas	21
Helmut	24
PART 1: INTRODUCTION TO KNOWLEDGE GRAPHS	27
Why Knowledge Graphs?	29
A Brief History of Knowledge Graphs	32
Fast forward	32
Semantic Web	33
Labeled Property Graphs	35
Core concepts	36
Metadata: Be FAIR	37
Context overcomes Ambiguity	39
Data Fabric instead of Data Silo	41
Knowledge Organization: Make Semantics explicit	43
Knowledge Management—better with Knowledge Graphs	45
Knowledge Graphs are not just for Visualization	48
Things, not strings	50
Machine Learning and Artificial intelligence: Make it explainable	52
Application scenarios	55
Orchestrating knowledge workflows in collaborative environments	56
Unify unstructured and structured data in a Semantic Data Catalog	59
Connecting the dots: Search and Analytics with Knowledge Graphs	61
Semantic Search	62
Drug discovery	64
Fraud detection	65
Digital Twins and Web of Things	65

Deep Text Analytics (DTA)	66
Contract Intelligence	68
Automated understanding of technical documentation	69
Intelligent Robotic Process Automation	70
Excellent Customer Experience	71
Customer 360	71
Recommender Systems	72
Conversational AI	74
Search Engine Optimization (SEO)	74
PART 2: SETTING THE STAGE	77
Introducing Knowledge Graphs into Organizations	79
When do you know that you need a Knowledge Graph?	80
Assessing the Semantic Maturity Level of an Organization	81
Organizational Aspects	81
Technical Aspects	82
Embedding Knowledge Graph Building in a Change Management Processes	83
Knowledge Graph Governance	86
Personas: too many cooks?	88
Chief Information Officer (CIO)	89
Chief Data Officer (CDO) / Data & Analytics Leaders	90
AI Architect	91
Data/Information Architect	93
Data Engineer	94
ML Engineer (MLOps)	95
Knowledge Engineer / Metadata Specialist	95
Subject Matter Expert (SME, Domain Expert)	95
Data Scientist / Data Analyst	96
Business user / Customer / Citizen	96
Setting up an Enterprise Knowledge Graph Project	97
Circumvent Knowledge Acquisition Bottlenecks	100
How to Measure the Economic Impact of an Enterprise Knowledge Graph	101

PART 3: MAKE KNOWLEDGE GRAPHS WORK	105
The Anatomy of a Knowledge Graph	107
Basic Principles of Semantic Knowledge Modeling	110
Basic ingredients of Knowledge Graphs	112
URIs and Triples	112
RDF Triples and Serialization	114
Knowledge Organization Systems	114
Taxonomies and Thesauri	115
Ontologies	119
Reusing Existing Knowledge Models and Graphs	122
World Knowledge Graphs	122
Domain Knowledge Graphs	123
Business and Finance	124
Pharma and Medicine	126
Cultural Heritage	127
Sustainable Development	129
Geographic Information	129
Methodologies	131
Card Sorting	131
Taxonomy Management	133
Taxonomy Governance	133
Process model	134
Ontology Management	136
RDFization: Transforming Structured Data into RDF	138
Text Mining: Transforming Unstructured Data into RDF	140
Entity Extraction	140
Text Classification	142
Fact Extraction	143
Entity Linking and Data Fusion	143
Querying Knowledge Graphs	145
Validating Data based on Constraints	146
Reasoning over Graphs	148

How to Measure the Quality of an Enterprise Knowledge Graph	150
Knowledge Graph Life Cycle	152
Expert Loop	153
Automation Loop	154
User Loop	154
Good Practices Based on Real-World Use Cases	156
Start small and grow	156
Get to know your data	157
"Not invented here!" is not a good practice	158
URI Patterns: Put your Knowledge Graph on a Solid Foundation	159

PART 4: SYSTEM ARCHITECTURE AND TECHNOLOGIES 163

Elements of an Enterprise Knowledge Graph Architecture	165
Integration Scenarios in an Enterprise Systems Architecture	167
Single source integration	167
Multi-source integration	168
Full integration with an ESA	169
Knowledge Graph as a Service	170
Knowledge Graph Ingestion Services	171
Knowledge Graph Enrichment Services	171
Knowledge Graph Consumption Services	172
Knowledge Graph Orchestration Services	173
A Semantic Data Catalog Architecture	175
Graph Databases	177

PART 5: EXPERT'S OPINIONS 181

Interviews	183
Jans Aasman	183
Aaron Bradley	186
Yanko Ivanov	192

Bryon Jacob	196
Atanas Kiryakov	199
Mark Kitson	203
Lutz Krueger	207
Joe Pairman	209
Ian Piper	213
Boris Shalumov	219
Michael J. Sullivan	221

PART 6: THE FUTURE OF KNOWLEDGE GRAPHS 225

AI and Knowledge Technologies in a Post-Corona Society	227
Self-servicing Based on Explainable AI	228
Fight Fake News and Hate Speech	229
HR at the Heart of Learning Organizations	229
Rebirth of Linked Open (Government) Data	231
The Beginning of a New AI Era	232
New Roles: The Rise of the Knowledge Scientist	234
Upcoming New Graph Standards	238

ADDENDUM: FAQS AND GLOSSARY 241

FAQs	243
Why do you think I should be interested in knowledge graphs?	243
How can I measure the business value of knowledge graphs?	243
Are knowledge graphs created primarily for data visualization and analytics?	244
Do I have to create a knowledge graph by hand or can this be automated?	244
Where can I download or purchase knowledge graphs?	245
Who in our organization will be working on knowledge graphs?	245
How are knowledge graphs related to artificial intelligence?	246
Which tools do I need to create and run a knowledge graph?	246

What's the difference between a taxonomy and an ontology?	247
What's the difference between the Semantic Web, linked data and knowledge graphs?	247
Are graph databases the same as knowledge graphs?	247
Glossary	248
AutoML	248
Business Glossary	248
Enterprise Knowledge Graph (EKG)	249
Human-in-the-Loop (HITL)	249
Inference and Reasoning	250
Information Retrieval (IR)	250
Knowledge Domain	250
Know Your Customer (KYC)	251
Named Graphs	251
Natural Language Processing (NLP)	251
Open-World Assumption (OWA)	252
Precision and Recall (F1 score)	252
Semantic AI	253
Semantic Footprint	253
Semantic Layer	254