Contents

Preface ---- IX

Introd	duction —— XI
1	The 8π -problem in the two dimensional case —— XIV
2	The parabolic-elliptic Keller–Segel model in higher dimensions —— XVII
3	Chemotaxis models with nonlocal diffusion operators —— XIX
4	Notations —— XX
5	Preliminaries on semigroups for linear diffusion equations —— XXI
1	Local-in-time solutions, small global-in-time solutions —— 1
1.1	Classical Keller-Segel system —— 1
1.2	Fractional Keller–Segel model and optimal initial data —— 6
1.3	Singular stationary solution —— 6
1.4	Local and global solutions with initial data in
	Morrey space $M^{d/a}(\mathbb{R}^d)$ — 9
1.5	Other simple constructions of solutions in nearly optimal spaces —— 13
1.6	Notes and complements —— 19
2	Large global-in-time solutions to models of chemotaxis —— 21
2.1	The case of classical diffusion —— 21
2.2	The case of a nonlocal model of chemotaxis —— 30
2.3	Statement of results for $\alpha \in (0, 2)$ —— 33
2.4	Pointwise comparison principle —— 35
2.5	Averaged comparison principle —— 43
2.6	Construction of global-in-time solutions for $\alpha \in (0,1)$ — 49
2.7	Construction of the unique global-in-time solutions for $\alpha \in (1,2)$ — 55
2.8	Large global-in-time solutions of the parabolic-parabolic Keller-Segel
	system on the plane —— 58
2.9	Comments on special solutions —— 66
3	Blowups —— 73
3.1	Solutions blowing up in a finite time —— 73
3.2	A novel approach to blowup and concentration of mass in two
	dimensions —— 85
3.3	Proof of blowup of radial solutions —— 89
3.4	Blowup in the plane \mathbb{R}^2 with 8π concentration of mass —— 91
3.5	Refinements of the proof of blowup of radial solutions in higher
	dimensions —— 104
3.6	Blowup of solutions for the two dimensional fractional diffusion Keller–Segel model —— 109

VI	II —	_	c	n	'n	te	n	te	

Index ---- 203

3.7	Keller–Segel model with chemoattractant consumption terms —— 115
3.8	Blowup of radially symmetric solutions, again —— 131
4	Blowups à la Fujita 137
4.1	Fujita's idea of the proof of blowup for the system with the classical diffusion —— 137
4.2	Blowup à la Fujita of solutions of system with fractional diffusion —— 145
5	Interpretations, complements, conjectures, et cetera —— 153
5.1	Dichotomy: local-global existence of solutions —— 153
5.2	Further comments on solvability of the classical and fractional
	Keller-Segel system 154
5.3	Optimal initial data for two dimensional Keller–Segel system —— 157
5.4	Blowup of solutions to a general diffusive aggregation model —— 165
5.5	Hypercontractivity of the linearization around the singular solution —— 177
5.6	Classical diffusion case: super- and subsolutions —— 181
5.7	Miscellanea, questions and conjectures, research plans —— 188
Biblio	graphy 191