

Handbook of Experimental Pharmacology

Volume 140

Editorial Board

G.V.R. Born, London

P. Cuatrecasas, Ann Arbor, MI

D. Ganten, Berlin

H. Herken, Berlin

K. Starke, Freiburg i. Br.

P. Taylor, La Jolla, CA

Contents

Section I. Human Immunodeficiency Virus Protease Inhibitors

CHAPTER 1

The Road to Fortovase. A History of Saquinavir, the First Human Immunodeficiency Virus Protease Inhibitor

S. REDSHAW, N.A. ROBERTS, and G.J. THOMAS. With 5 Figures	3
A. Background	3
I. Present Scale of the Acquired Immunodeficiency Syndrome Pandemic	3
II. Identification of the Cause of AIDS	3
III. Search for a Cure	4
IV. Identification and Characterisation of HIV Protease	4
B. Roche Inhibitor Program	6
I. Enzyme Assays	7
II. Inhibitor Design	7
III. Selectivity	10
IV. Antiviral Activity	11
V. Combination Studies	11
VI. Resistance	12
VII. Safety and Pharmacokinetics	12
C. Early Clinical Studies	13
I. Absorption and Metabolism	13
II. Efficacy	13
III. Tolerability	14
D. Approval and Beyond	14
I. Incidence of Resistance in Clinical Use	15
II. Immune Function and Opportunistic Infections	15
III. Fortovase – a New Formulation	16
E. Outlook	16
References	17

CHAPTER 2

Clinical Experience with Human Immunodeficiency Virus Protease Inhibitors: Antiretroviral Results, Questions and Future Strategies

S. VELLA. With 1 Figure	23
A. Introduction	23
B. Activity on Immunological and Virological Markers, and Clinical Efficacy	24
C. Clinical Implications of Resistance to PIs	25
D. Place of PIs in Current Treatment Strategies	27
I. How to Start Antiretroviral Therapy and When to Make the Decision to Start Treatment	28
E. Future Directions	28
References	30

CHAPTER 3

The Nature of Resistance to Human Immunodeficiency Virus Type-1 Protease Inhibitors

M. VALLIANCOURT, W. SHAO, T. SMITH, and R. SWANSTROM. With 2 Figures	33
A. Introduction	33
B. Selection for Resistance: in Vitro and in Vivo Comparison	33
C. Biochemical Basis for Resistance	38
D. Different Classes of Resistance Mutations in the Protease	39
E. Cleavage-Site Mutations	40
F. Cross-Resistance	41
G. Concepts for Salvage Therapy	41
H. Summary	43
References	44

CHAPTER 4

The Next Generation of Human Immunodeficiency Virus Protease Inhibitors: Targeting Viral Resistance

E.S. FURFINE. With 3 Figures	49
A. Human Immunodeficiency Virus Protease Inhibitors: Advancements in the Treatment of Human Immunodeficiency Virus Disease	49
I. Current Status of Human Immunodeficiency Virus Protease Inhibitors	49
II. Two Strategies to Reduce Viral Resistance to PIs	50
B. Strategy 1: Combination Therapy. Maximal Reduction of Viral Load to Retard Development of Resistance	51
I. Theory and Background	51

II. Limitations	52
III. Improvement of Strategy 1: Exploiting Currently Available Inhibitors	53
1. Approaches to Improving Patient Adherence	53
2. Reducing Resistance Development by Treatment with Multiple PIs	54
IV. The Next Generation of Inhibitors: the Benefits of Increasing Potency	55
C. Strategy 2: Designing Drugs to Inhibit PI-Resistant Viruses	56
I. Viral Resistance to PIs	56
II. PI-Resistant Virus: What's the Real Target?	56
III. The Role of Mutations	57
1. Mutations in the Protease Gene	57
2. Mutations Outside of the Protease Gene	59
3. Viral Fitness	59
IV. The Mechanism of Reduction of PI Binding Affinity to Resistant Protease	60
1. Structural Evaluation	60
2. Kinetic Evaluation	64
V. Chemical Strategies to Inhibit Resistant HIV Protease	65
D. Suggestions for Future Therapeutic Strategies	66
References	66

Section II. Other Viral (Non-HIV) Protease Inhibitors

CHAPTER 5

The Proteinases Encoded by Hepatitis C Virus as Therapeutic Targets

C. STEINKÜHLER, U. KOCH, R. DE FRANCESCO, and A. PESSI.

With 4 Figures	75
A. Introduction	75
B. The NS3 Proteinase	78
I. Structure of the NS3 Proteinase	78
1. The NS3 Proteinase is a Chymotrypsin-Like Serine Proteinase	78
2. A Zinc-Binding Site in the NS3 Serine-Proteinase Domain	80
3. Substrate Specificity of NS3 Serine Proteinase	81
II. Inhibitors of the NS3 Proteinase	82
1. Noncompetitive Inhibitors	82
2. Active-Site-Directed Inhibitors	83
a) Substrate Analogues	83
b) Product Analogues	84
c) Serine-Trap Inhibitors	87

C. The NS2/3 Proteinase	87
References	90

CHAPTER 6

The Human Herpes-Virus Proteases

C.E. DABROWSKI, X. QIU, and S.S. ABDEL-MEGUID.

With 10 Figures	95
A. Introduction	95
B. Background	96
C. Three-Dimensional Structures	98
I. Overall Fold	98
II. Dimer Interface	99
III. Catalytic Triad	101
IV. The Oxyanion Hole	103
V. Implications for the Catalytic Mechanism	104
D. Ligands	104
I. Substrates	105
II. Assays	107
III. Inhibitors	107
1. Peptide and Peptidomimetic Inhibitors	107
2. Non-Peptidic Inhibitors	108
3. Natural-Product Inhibitors	109
E. Cell-Based Activity of Protease Inhibitors	110
F. Perspective	110
References	111

CHAPTER 7

The 3C Proteinases of Picornaviruses and Other Positive-Sense, Single-Stranded RNA Viruses

E.M. BERGMANN and M.N.G. JAMES. With 4 Figures	117
A. Introduction	117
B. Picornaviridae	118
C. Other Families of Positive-Sense, Single-Stranded RNA Viruses	119
I. Caliciviridae	119
II. Coronaviridae	120
III. Others	120
D. Functions of Viral Proteinases in Positive-Sense, Single-Stranded RNA Viruses	121
I. The Picornaviral Life Cycle	121

II. Proteolytic Processing of the Viral Polyprotein	123
III. Regulation of Capsid Assembly by Proteolytic Cleavages of the Capsid-Protein Precursors	124
IV. Inhibition of Cellular Functions by Proteolytic Cleavages of Host Cell Proteins	124
E. The 3C Proteinases	125
I. Structure	125
II. Specificity and Substrate Binding	126
III. Enzymatic Mechanism	129
IV. Autocatalytic Excision of the 3C Proteinases	131
V. Other Functions of the Picornaviral 3C Gene Product	131
F. Inhibition of 3C Proteinases	132
I. Effect of 3C Proteinase Inhibitors on Viral Replication	132
II. Strategies for Design of 3C Proteinase Inhibitors	133
III. Inhibitors of the Chymotrypsin-Like Cysteine Proteinases	135
G. Summary and Outlook	136
References	136

CHAPTER 8

Adenovirus Proteinase-Antiviral Target for Triple-Combination Therapy on a Single Enzyme: Potential Inhibitor-Binding Sites

W.F. MANGEL, D.L. TOLEDO, M.T. BROWN, J. DING, R.M. SWEET,
D.L. BARNARD, and W.J. MCGRATH. With 7 Figures

145	A. Virus-Coded Proteinases as Targets for Antiviral Therapy
145	I. Adenovirus and Its Proteinase in the Virus Life Cycle
146	II. The AVP as a Model System for Antiviral Agents
146	B. Biochemistry of the AVP
146	I. Cloning of the Gene and Development of an Assay for the Adenovirus-2 Proteinase
146	II. Discovery and Characterization of Two Cofactors
147	III. Binding Interactions among the Cofactors
147	1. AVP Binding to pVIc in the Absence and Presence of DNA
147	2. AVP-pVIc-Complex Binding to DNA
149	IV. Roles of AVP Cofactors in Virus Maturation
150	C. Crystal Structure of the Adenovirus-2 Proteinase Complexed with pVIc
152	D. Potential Inhibitor-Binding Sites
152	I. Active Site
153	II. DNA-Binding Sites

III. pVlc-Binding Sites	153
E. Summary and Prospects	155
References	156
CHAPTER 9	
Proteinases as Virulence Factors in Bacterial Diseases and as Potential Targets for Therapeutic Intervention with Proteinase Inhibitors	
J. POTEMPA and J. TRAVIS	159
A. Introduction	159
B. Common Themes in Bacterial Virulence	159
I. Host Defenses Against Bacterial Pathogens	159
II. Virulence Factors	160
C. Bacterial Proteinases as Potential Virulence Factors	160
I. Distribution of Proteinases among Pathogens	160
II. Potential Targets for Bacterial Proteinases	163
1. Inactivation of Host Proteinase Inhibitors	163
2. Direct and Indirect Degradation of Connective Tissue	163
3. Dysregulation of Proteinase Cascades	164
a) Kallikrein-Kinin Cascade	164
b) Blood Coagulation Cascade	165
c) Fibrinolysis Cascade	166
d) Complement Cascade	167
4. Degradation of Immunoglobulin Function	168
5. Dysregulation of Cytokine Networking Systems	169
6. Virus Activation	170
7. Proteolytic Activity of Bacterial Toxins	171
a) Clostridium Neurotoxins	171
b) Anthrax Lethal Factor	171
c) Epidermolytic (Exfoliative) Toxins of <i>S. aureus</i>	172
D. Dilemmas in Considering Bacterial Proteinases as Targets for Antibacterial Chemotherapy	172
E. Paradigms for Testing Proteinase Inhibitors as Therapeutic Agents	173
I. <i>P. aeruginosa</i> Infections	173
II. <i>S. Pyogenes</i> Infections	174
III. Diseases Caused by Proteolytic Toxins	176
IV. Periodontal Disease	176
V. Plague	178
F. Bacterial Proteinases to the Rescue	179
G. Conclusions	180
References	180

CHAPTER 10**Parasite Proteases as Targets for Therapy**

J.H. MCKERROW, C.R. CAFFREY, and J.P. SALTER, With 1 Figure	189
A. Introduction	189
B. Metalloproteases	189
I. Parasite Aminopeptidases	190
II. Parasite Metalloproteases and Tissue Invasion	191
III. The Protease gp63	191
IV. Is gp63 a Logical Target for Development of Protease Inhibitors as Therapy?	193
V. Future Development of Metalloprotease Inhibitors Targeting Parasite Proteases	193
C. Cysteine Proteases	194
I. Irreversible Inhibitors	194
II. Reversible Inhibitors	197
D. Serine Proteases	198
I. Cercarial Elastase, an Example of a Parasite-Larval Serine Protease	199
II. Other Potential Serine-Protease Targets	199
E. Aspartyl Proteases	199
I. Plasmepsins I and II	200
II. The Indirect Discovery of an Antiparasitic Protease Inhibitor	201
References	201

Section III. (Non-Viral) Proteases Involved in Diseases**CHAPTER 11****Host Proteinases as Targets for Therapeutic Intervention**

J.C. CHERONIS	207
A. Introduction	207
B. History	212
C. Section Overview	213
References	214

CHAPTER 12**The Role of Metalloprotease Inhibitors in Cancer and Chronic Inflammatory Diseases**

H.S. RASMUSSEN and K.P. LYNCH, With 2 Figures	221
A. Introduction	221
B. MMP Expression in Disease	222

I. Cancer	222
II. Arthritis	223
III. Inflammatory Bowel Disease	223
IV. Atherosclerosis	223
C. General Considerations in the Development of MMPs	224
D. Preclinical Evidence of Anti-Tumor Activity of MMPs	226
E. Clinical Studies with MMPs	227
I. Design Considerations in Cancer	227
II. Batimastat	228
III. Marimastat	228
IV. Other MMP Inhibitors	230
F. Clinical Studies in Non-Cancer Indications	230
G. Conclusions	231
References	231

CHAPTER 13

The Tumor Necrosis Factor- α Converting Enzyme

J.D. BECHERER, M.H. LAMBERT, and R.C. ANDREWS.

With 4 Figures	235
----------------------	-----

A. Biology of Tumor Necrosis Factor	235
I. Historical Perspective	235
II. The Role of TNF in Inflammatory Diseases	236
B. Characterization of the TNF- α Converting Enzyme	236
I. Cell Secretion of TNF- α	236
II. Purification and Cloning of TNF- α Converting Enzyme	237
III. Structural Features of TACE	238
C. Inhibitors of TACE and TNF- α Secretion	245
I. MMP Inhibitors and TACE	245
II. In Vivo Studies with TACE Inhibitors	250
D. TACE and Membrane Protein Secretases	251
I. TACE-Mediated Shedding Events	251
II. Other Putative Sheddases	252
References	253

CHAPTER 14

Serine Elastases in Inflammatory and Vascular Diseases

J.C. CHERONIS and M. RABINOVITCH. With 5 Figures	259
--	-----

A. Introduction	259
I. Neutrophil Elastase	260
II. Proteinase 3	261
III. Endogenous Vascular Elastase	261
IV. Endothelial Cell Elastase	262

B. Serine Elastases and Inflammation	262
C. Serine Elastases and Vascular Diseases	264
D. Potential Clinical Targets for Serine-Elastase Inhibition	268
I. Restenosis, Atherosclerosis and Transplant Vasculopathy	269
II. Myocardial Infarction	270
III. Stroke	270
IV. Bronchopulmonary Dysplasia	271
E. Summary/Conclusion	271
References	271

CHAPTER 15

Inhibitors of Thrombin and Factor Xa

A.H. SCHMAIER. With 3 Figures	277
A. Introduction	277
B. Thrombin Inhibitors	280
I. Direct Thrombin Inhibitors	281
1. Naturally Occurring Thrombin Inhibitors in Humans	281
2. Naturally Occurring or Synthetic Thrombin Inhibitors Applied to Man	282
a) Active-Site Inhibitors	282
b) Active-Site and Exosite-I Inhibitors	284
c) Exosite-I Inhibitors	285
d) Active-Site and Exosite-II Inhibitors and Exosite-II Inhibitors Alone	286
II. Indirect Thrombin Inhibitors	287
C. Factor-Xa Inhibitors	289
I. Naturally Occurring Factor-Xa Inhibitors in Humans	289
II. Naturally Occurring or Synthetic Factor-Xa Inhibitors Applied to Man	290
D. Conclusions	292
References	293

CHAPTER 16

Inhibitors of Papain-Like Cysteine Peptidases in Cancer

R. SHRIDHAR, B.F. SLOANE, and D. KEPPLER. With 2 Figures.	301
A. Introduction	301
B. General Overview	301
I. Cysteine Peptidases	301
II. Cystatin Super-family	302

1. Family 1 (Stefins)	302
2. Family 2 (Cystatins)	304
3. Family 3 (Kininogens)	306
4. Families 4, 5, 6 (Fetuins, Cystatin-Related Proteins, Histidine-Rich Glycoproteins)	306
III. Mechanism of Inhibition	307
C. Cystatins in Cancer	310
I. Inhibitory Activity	310
II. Stefins A and B	311
III. Cystatins C and E/M	312
IV. Synthetic Inhibitors	314
D. Potential Transcriptional Regulation	316
I. Stefins A and B	317
II. Cystatin C	319
III. Links to Cancer Progression	319
E. Perspectives: Therapeutic Implications	320
References	321

CHAPTER 17

Caspases and Their Natural Inhibitors as Therapeutic Targets for Regulating Apoptosis

Q.L. DEVERAUX, J.C. REED, and G.S. SALVESEN. With 3 Figures	329
A. Apoptosis	329
B. Apoptosis Is Mediated by Caspase	329
C. Lessons Learned from Natural Caspase Inhibitors	330
D. Structural Characteristics of the IAPs	332
E. Biology of the Human IAPs	333
F. IAPs as Therapeutic Targets	334
G. Potential for Caspase Inhibitor Therapy	335
H. Conclusions	336
References	337

CHAPTER 18

Proteasome and Apoptosis

K. TANAKA and H. KAWAHARA. With 2 Figures	341
A. Introduction	341
B. The Ub System	341
I. The Ub-Ligating Pathway	341
II. Ubiquitination and Cell Cycle	343
III. Deubiquitinating Enzymes and Cell Proliferation	344
C. The Proteasome: a Protein-Killing Machine	345

D. Regulatory Control of Ub and the Proteasome in Apoptosis	346
E. Proteasome Inhibitors Help Elucidate the Biological Roles of the Proteasome in the Apoptotic Pathway.....	348
F. The Ub-Proteasome System and Cancer Therapy	353
G. Perspectives	354
References	355

CHAPTER 19

Proteolytic Processing of the Amyloid Precursor Protein of Alzheimer's Disease

S.F. LICHTENTHALER, C.L. MASTERS, and K. BEYREUTHER. With 1 Figure	359
A. Introduction	359
B. Molecular Biology of AD	360
I. The Amyloid Precursor Protein.....	360
II. Overview of the Proteolytic Processing of APP	360
C. Description of the Proteolytic Activities Cleaving APP.....	362
I. α -Secretase	363
II. β -Secretase	365
III. γ Secretase	366
IV. δ -Secretase	369
D. Therapeutic Potential of the APP Secretases	369
References	370

CHAPTER 20

Presenilins and β -Amyloid Precursor Protein-Proteolytically Processed Proteins Involved in the Generation of Alzheimer's Amyloid β Peptide

C. HAASS. With 5 Figures	375
A. Introduction	375
B. Proteolytic Generation of the Amyloid β -Peptide	375
I. Endosomal/Lysosomal Processing Generates Amyloidogenic Precursors	376
II. $A\beta$ Is Produced by a Physiological Processing Pathway	377
III. FAD-Linked Mutations in the β APP Gene Affect $A\beta$ Generation	377
C. Role of Mutant Presenilins in Amyloid Generation	378
I. Structure and Topology of PS Proteins	379
D. Conventional Proteolytic Processing of PS Proteins	381
I. Identification of the Cleavage Site	381
II. Regulation of Fragment Formation	382
III. Effects of PS Mutations on Fragment Formation	382

E. Proteolytic Degradation of PSs	384
I. PS Holoproteins Are Degraded by the Proteasome	384
II. PSs Are Death Substrates for Caspases	384
III. A Heterodimeric PS Complex Appears to Be Required for PS Stability and $\text{A}\beta$ 42 Generation	386
F. Evidence That PSs Activate the γ Secretase Cleavage	388
G. PSs: New Targets for Anti-Amyloidogenic Drugs?	390
References	390
 Appendix	397
 Subject Index	403