

Contents

Control of Glucagon Secretion

CHAPTER 23

Glucose in the Control of Glucagon Secretion. J. E. GERICH. With 6 Figures

A. Introduction	3
B. Effect of Changes in Extracellular Glucose Concentration on Glucagon Secretion	3
I. Increases in Extracellular Glucose Concentration	3
1. In Vivo Studies	3
2. In Vitro Studies	4
II. Decreases in Extracellular Glucose Concentration	5
1. In Vivo Studies	5
2. In Vitro Studies	8
C. Mechanism of Glucose Action on A-cell Function	9
I. A-cell Glucose Metabolism	9
II. Effects of Glucose Metabolites and Inhibitors of Glucose Metabolism	10
III. Evidence for a Glucoreceptor Mechanism not Involving Metabolism	10
IV. Calcium-Potassium and Glucose Action	11
V. Mechanism for A-cell Response to Hypoglycemia	11
1. General Considerations	11
2. Sympathetic and Parasympathetic Modulation	12
D. Modulatory Effects of Glucose on A-cell Function	13
I. Acute Effects	13
II. Prolonged and Chronic Effects	13
References	15

CHAPTER 24

The Amino Acid-Induced Secretion of Glucagon

R. ASSAN, M. MARRE, and M. GORMLEY. With 8 Figures

A. Introduction	19
B. Phenomenology	19
I. In Vitro	19
1. Isolated Perfused Pancreas	19
2. Pancreatic Fragments, Islets and Islet Cells	22
3. Gastric A-cells In Vitro	22
4. Other Tissues	22

II. In Vivo	22
1. Human Studies	22
2. Studies in Normal Dogs	23
3. Other Studies	24
C. Mechanism of Amino Acid-Induced Glucagon Release	24
I. Contribution of the Microtubular-Microfilamentous System	26
II. How Do Amino Acids Trigger Glucagon Release?	26
III. Contribution of the Adenylate Cyclase System and of Ca^{2+} and Other Ion Fluxes	27
IV. Relative Resistance of A-cell Function to Hypothermia	27
D. Modulation of Amino Acid-Induced Glucagon Release	28
I. Major Role of Glucose and Insulin Concentrations	28
1. Role of Glucose in Nondiabetic Subjects	28
2. Role of Insulin	29
3. Studies in Diabetic Subjects	29
II. Other Physiologic Modulations	30
1. Short-Term Modulations	30
2. Long-Term Modulations	30
III. Other Pathophysiologic Modulations	30
1. Liver Cirrhosis	30
2. Kidney Failure	31
3. Thyroid Conditions	31
4. The Somatostatinoma Syndrome	31
5. The Glucagonoma Syndrome	31
6. Obese Nondiabetic Patients	31
7. Pheochromocytoma	31
8. Stress	31
E. Amino Acid-Induced Glucagon Release and the Regulation of Substrate Distribution	32
I. Physiologic Relevance of the Amino Acid and Glucagon Concentrations	32
1. Blood Amino Acid Concentration	32
2. Plasma Glucagon Concentration and Biologic Efficacy	32
II. Clinical Correlations	34
1. Normal Subjects	34
2. Insulin-Dependent Patients	35
References	36

CHAPTER 25

Free Fatty Acids and Glucagon Secretion. A. S. LUYCKX and P. J. LEFEBVRE With 10 Figures

A. Introduction	43
B. In Vitro Studies	43
I. Isolated Islets	43
II. Isolated Perfused Rat Pancreas	45

C. Experiments in Animals	46
I. Dogs	46
II. Rats	47
III. Ducks	49
D. Studies in Humans	49
I. Normal Subjects	49
II. Pregnant Women	51
III. Diabetes	52
IV. Hypertriglyceridemia	53
E. The Modulating Role of Circulating FFA on Glucagon Secretion	54
I. Mechanism of Action of FFA on A-cells	55
II. Possible Significance of the Role of FFA in the Regulation of A-cell Secretion	56
References	56

CHAPTER 26

Ions in the Control of Glucagon Release

V. LECLERCQ-MEYER and W. J. MALAISSE. With 2 Figures

A. Introduction	59
B. Calcium and Glucagon Release	59
I. The Inhibitory Role of Calcium	59
1. Experimental Data	59
2. Possible Mechanisms of Action	61
II. The Positive Modulating Role of Calcium	63
1. Experimental Data	63
2. Possible Mechanisms of Action	65
III. The Recognition Role of Calcium	65
IV. The In Vivo Effects of Calcium	66
V. Conclusions	66
C. Other Divalent Cations	66
I. Magnesium	66
II. Manganese	67
III. Miscellaneous Cations	67
D. Monovalent Cations	67
I. Potassium	67
II. Sodium	70
III. The Sodium-Potassium Pump	70
IV. Ammonium	70
E. Anions	70
F. Conclusions	71
References	71

CHAPTER 27

Cyclic Nucleotides in the Control of Glucagon Secretion. G. C. WEIR

A. Introduction	75
B. Effects of Exogenous Cyclic AMP	76
C. Effects of Phosphodiesterase Inhibitors	76
D. Effects of Agents Thought to Act via Endogenous Cyclic AMP	77
E. Conclusions	78
References	79

CHAPTER 28

Prostaglandins and Glucagon Secretion. A. S. LUYCKX and P. J. LEFEBVRE

With 10 Figures

A. Introduction	83
I. Origin and Metabolism of Prostaglandins	83
II. Prostaglandins as Local or Intracellular Messengers	84
III. Methodological Considerations	84
B. Studies In Vitro on the Influence of Prostaglandins on Glucagon Secretion	85
I. Effect of Exogenous Prostaglandins	85
II. Role of Endogenous Prostaglandins	85
1. Prostaglandin Biosynthesis by Islet Tissue	85
2. Endogenous Prostaglandins and Glucagon Secretion In Vitro	87
C. Studies In Vivo on the Influence of Prostaglandins on Glucagon Secretion	92
I. Effect of Exogenous Prostaglandins	92
1. Rats	92
2. Dogs	92
3. Humans	93
II. Role of Endogenous Prostaglandins	93
D. Summary and Conclusions	95
References	96

CHAPTER 29

Hormones in the Control of Glucagon Secretion

S. B. PEK and R. S. SPANGLER

A. Introduction	99
B. Thyroid Hormones	99
C. Calcium-Regulating Hormones	100
I. Parathyroid Hormone	100
II. Calcitonin	100
III. Vitamin D	100
D. Steroid Hormones	101
I. Glucocorticoids	101
II. Mineralocorticoids	101
III. Sex Steroids	102

E. Placental Hormones	102
F. Gastrointestinal Hormones	102
I. Gastric Inhibitory Polypeptide	103
II. Vasoactive Intestinal Peptide	103
III. Secretin	104
IV. Porcine Intestinal Heptacosapeptide	104
V. Bombesin	105
VI. Cholecystokinin	105
VII. Gastrin	106
VIII. Cerulein	106
IX. Motilin	106
G. Pituitary Hormones	107
I. Growth Hormone	107
II. Adrenocorticotrophic Hormone	108
III. Endorphins and Enkephalins	108
H. Hypothalamic Hormones	109
I. Hypothalamic Lesions	109
II. Substance P and Neurotensin	109
III. Unidentified Polypeptides	110
J. Conclusions	110
References	111

CHAPTER 30

Neural Control of Glucagon Secretion. J. P. PALMER and D. PORTE, JR.
With 3 Figures

A. Introduction	115
B. Anatomic Observations	115
I. Neural Pathways	115
II. Species Variations	117
C. Experimental Observations	119
I. Central Nervous System Studies	119
II. Nerve Stimulation and Sectioning Studies	120
III. Infusion Studies	121
D. Physiologic and Pathophysiologic Observations	123
E. Neural Control of Gastric Glucagon	124
F. Conclusions	125
References	126

CHAPTER 31

Intraislet Insulin-Glucagon-Somatostatin Relationships

E. SAMOLS, G. C. WEIR, and S. BONNER-WEIR. With 1 Figure

A. Introduction	133
B. Overview of Islet Anatomy	134
C. General Mechanisms of Communication Between Cells	135

D. Potential Interactions Within Islets	136
I. Potential Interactions Between Cells	136
1. Basic Scheme	136
2. Effect of Glucagon Upon B- and D-cells	136
3. Effect of Somatostatin Upon A- und B-cells	136
4. Effect of Insulin Upon A- and D-cells	137
5. Pancreatic Polypeptide as an Ignored Entity and Why	138
6. Other Potential Islet Mediators	139
II. Neural Control	140
1. Cholinergic Agonism	140
2. Adrenergic Agonism	140
3. Local Presynaptic Autonomic Regulation	140
4. Peptidergic and Purinergic Regulation	141
III. Potential Role of Gap Junctions as Determinants of Coordination Between Islet Cells	141
E. Anatomic Determinants of Islet Regulation	142
F. Indirect Experimental Evidence for Interaction Between Islet Cells	146
G. Efforts to Demonstrate Local Interactions Directly with Immune Neutralization	150
H. Arguments Against Islet Interactions	152
J. Oscillation of Secretion Suggesting Coordination Between Islets	153
K. Consideration of an Islet-Acinar Portal System	154
L. Islet Interrelationships in Diabetes	154
M. Overview and Conclusions	160
References	162

CHAPTER 32

Pharmacologic Compounds Affecting Glucagon Secretion. A. S. LUYCKX With 4 Figures

A. Introduction	175
B. Drugs Used in the Treatment of Diabetes	175
I. Insulin	175
II. Sulfonylureas	176
III. Biguanides	177
C. Drugs Related to the Cholinergic System	179
D. Drugs Related to the Sympathetic Nervous System	181
I. Reserpine	182
II. Beta-Adrenergic Blocking Agents	182
III. Alpha-Adrenergic Blocking Agents	184
IV. Clonidine	184
V. L-Dopa, Dopamine, and Bromocriptine	184
VI. Diazoxide and Tolmesoxide	185
E. Serotonin and Serotonin Antagonists	186
F. Drugs Affecting Ionic Concentrations and/or Fluxes	186
I. Calcium, Calcitonin, and Vitamin D	187

II. Verapamil and Procaine	188
III. Veratridine, Ouabain, and Hydroquinidine	189
G. Drugs Affecting Lipid Metabolism	189
H. Drugs Acting on the Central Nervous System	190
I. Diphenylhydantoin, Diazepam, and Haloperidol	190
II. Morphine, Endorphins, and Enkephalins	190
J. Hormonal Steroids	191
I. Glucocorticoids	191
II. Contraceptive Steroids	191
K. Drugs Affecting the Mitotic Spindle	192
L. Somatostatin and Somatostatin Analogs	192
References	194

Extrapancreatic Glucagon

CHAPTER 33

Extrapancreatic Glucagon and Its Regulation

P. J. LEFEBVRE and A. S. LUYCKX. With 5 Figures

A. Introduction	205
B. Extrapancreatic Glucagon in the Canine Stomach	205
I. Presence of A-cells	205
II. Presence of Glucagon	206
III. Control of Gastric Glucagon Release In Vitro	206
1. Role of Glucose and Insulin	206
2. Stimulation by Arginine	207
3. Role of the Autonomic Nervous System	208
4. Possible Role of Prostaglandins	209
IV. Secretion of Gastric Glucagon In Vivo	209
V. Physiologic and Pathophysiologic Relevance of Extrapancreatic Glucagon	211
C. Gastrointestinal Glucagon in Other Animal Species	212
D. Glucagon and the Salivary Glands	212
E. Other Extrapancreatic Localizations of Glucagon	213
F. In Vivo Generation of Glucagon from Glucagon-Like Immunoreactive Peptides	214
G. Extrapancreatic Glucagon in Humans	214
H. Conclusions	215
References	216

Glucagon in Various Physiological Conditions

CHAPTER 34

Glucagon and Starvation. R. A. GELFAND and R. S. SHERWIN. With 7 Figures

A. Introduction	223
B. The Postabsorptive State	223

C. Glucoregulatory Hormones in Starvation	226
D. Metabolic Alterations in Starvation	228
I. The Early Phase	228
II. Prolonged Starvation	231
E. Summary and Conclusions	234
References	235

CHAPTER 35

Glucagon and Pregnancy. C. KÜHL and J. J. HOLST. With 3 Figures

A. Introduction	239
I. Impaired Glucose Tolerance in Pregnancy	239
II. Metabolic Adaptations to Pregnancy	239
B. Plasma Glucagon in the Fasted State	240
I. Changes After Overnight Fasting	240
II. Changes After Prolonged Fasting and Insulin-Induced Hypoglycemia	241
III. Placental Transfer of Glucagon and Morphology of A-cells in Pregnancy	242
C. Plasma Glucagon in the Fed State	242
I. Response to Glucose Administration	242
II. Response to Amino Acids	244
III. Response to Mixed Meals	245
D. Summary and Conclusions	246
References	247

CHAPTER 36

Glucagon in the Fetus and the Newborn. J. GIRARD and M. SPERLING

With 14 Figures

A. Introduction	251
B. Ontogenesis of Glucagon in Pancreas and Plasma	252
I. Rat	252
II. Rabbit	252
III. Sheep	252
IV. Human	252
C. Glucagon Secretion in the Fetus	253
I. Impermeability of the Placenta to Glucagon	253
II. Control of Glucagon Secretion in the Fetus	253
1. Changes in Glucose Concentration	253
2. Effects of Amino Acids	257
3. Effects of Neurotransmitters	257
4. Effects of Hypoxia	258
5. Prolonged Pregnancy	259

D. Glucagon Secretion in the Newborn	259
I. Evidence for a Role of the Sympathetic Nervous System in the Neonatal Surge of Glucagon	260
II. Glucagon Secretion in Newborn Infants of Diabetic Mothers . .	261
III. Glucagon Secretion During the Suckling Period	262
IV. Glucagon Secretion During the Weaning Period	262
E. Metabolic Effects of Glucagon	263
I. In the Fetus	263
II. In the Neonate	264
III. During the Suckling Period	265
IV. During the Weaning Period	266
F. Glucagon Receptors in the Perinatal Period	267
References	268

CHAPTER 37

Glucagon as a Counterregulatory Hormone. J. E. GERICH. With 13 Figures

A. Glucose Counterregulation, an Overview	275
B. Glucagon in the Prevention of Hypoglycemia	276
I. The Postabsorptive State	276
II. The Intraprandial State	280
C. Glucagon in the Restoration of Normoglycemia	282
D. Glucagon and the Somogyi Phenomenon	289
E. Summary	291
References	291

CHAPTER 38

Glucagon and Its Relationship to Other Glucoregulatory Hormones in Exercise and Stress in Normal and Diabetic Subjects. H. L. A. LICKLEY, F. W. KEMMER, D. H. WASSERMAN, and M. VRANIC. With 20 Figures

A. Introduction	297
B. Exercise	299
I. Metabolic Events During Exercise	299
II. Fuel Sources During Exercise	300
1. Carbohydrate-Derived Fuels	300
2. Fat-Derived Fuels	301
3. Protein-Derived Fuels	302
III. Hormonal Changes During Exercise	302
IV. Hormonal Interactions in the Control of Glucoregulation During Exercise	305
1. Role of Insulin	305
2. Role of Catecholamines	306
3. Role of Glucagon	308
V. The Response to Exercise in Diabetic Subjects	314
1. Exercise in Insulin-Dependent Diabetics	315
2. Exercise in Noninsulin-Dependent Diabetics	318

C. Stress	318
I. Hormonal Response to Stress	319
II. Major Changes in Fuels or Energy Substrate During Stress	320
1. Carbohydrate-Derived Fuels	320
2. Fat-Derived Fuels	320
3. Protein-Derived Fuels	321
III. Hormonal Interactions in Glucoregulation During Stress	321
1. Pathologic Stress States	321
2. Experimental Stress Models	321
3. Glucagon-Insulin Interactions in Glucoregulation and the Diabetogenic Role of Glucagon	326
4. Glucagon-Insulin-Epinephrine Interactions in Glucoregulation .	331
5. Hormonal Regulation of "Futile Cycling" in the Liver	339
D. Summary	340
References	341

Catabolism of Glucagon

CHAPTER 39

The Metabolic Clearance Rate of Glucagon

K. S. POLONSKY, J. B. JASPAN, and A. H. RUBENSTEIN. With 2 Figures

A. Introduction	353
B. Principles of Measurement	353
C. Glucagon Metabolic Clearance Rate in Laboratory Animals	354
D. Glucagon Metabolic Clearance Rate in Humans	355
E. Organ Contribution to Overall Glucagon Metabolic Clearance Rate .	356
F. Plasma Half-Life	356
G. Summary and Conclusions	357
References	358

CHAPTER 40

Hepatic Handling of Glucagon. T. ISHIDA and J. B. FIELD. With 9 Figures

A. Introduction	361
B. Evidence for Glucagon Extraction by the Liver	361
I. In Vitro Studies	361
II. Relationship Between Portal and Peripheral Vein Glucagon Levels	362
III. Studies in Subjects with Portacaval Shunts	362
IV. Direct Measurement of Basal Hepatic Extraction of Glucagon .	363
V. Effect of Glucagon Heterogeneity on Hepatic Glucagon Extraction Rate	364
VI. Relationship Between Hepatic Extraction of Glucagon and Insulin	365
C. Factors Regulating Hepatic Extraction of Glucagon	366
I. Changes in Splanchnic Blood Flow	366
II. Anesthesia and Laparotomy	367

III. Changes in Portal Vein Glucagon Concentration	368
1. Increased Amount of Glucagon Presented to the Liver	368
2. Decreased Amount of Glucagon Presented to the Liver	374
IV. Partial Hepatectomy	375
D. Relationship Between Net Hepatic Glucose Output and Glucagon and Insulin	376
I. Peripheral Vein Insulin: Glucagon Molar Ratio	376
II. Portal Vein Insulin: Glucagon Molar Ratio	376
III. Molar Ratio of Insulin and Glucagon Extracted by the Liver	382
E. Fate of Glucagon Extracted by the Liver	382
F. Conclusions	384
References	385

CHAPTER 41

The Renal Handling of Glucagon. P. J. LEFEBVRE and A. S. LUYCKX

With 1 Figure

A. Introduction	389
B. Kidney Glucagon Uptake and Urinary Excretion	389
C. Heterogeneity of Plasma Glucagon and Renal Uptake	392
D. The Fate of the Glucagon Taken up by the Kidney	392
E. Conclusions	394
References	395

Glucagon in Pathology

CHAPTER 42

Glucagon Deficiency. G. BODEN. With 2 Figures

A. Introduction	399
B. Chronic Glucagon Deficiency	399
I. After Surgical Resection of A-cells	399
1. In Humans	399
2. In Dogs	401
3. In Other Experimental Animals	401
II. Idiopathic Chronic Glucagon Deficiency in Neonates	402
C. Acute Glucagon Deficiency	403
I. After Administration of Anti-Glucagon Sera	403
II. After Infusion of Somatostatin	403
D. Metabolic Effects of Glucagon Deficiency	404
I. On Protein and Amino Acid Metabolism	404
II. On Hepatic Glucose Production	407
E. Summary and Conclusions	407
References	408

CHAPTER 43

The Glucagonoma Syndrome. S. M. WOOD, J. M. POLAK, and S. R. BLOOM
With 10 Figures

A. Introduction	411
B. Incidence	411
I. Age	412
II. Sex	412
C. Clinical Features	412
I. Skin Lesions	412
1. Pathogenesis	412
2. Distribution and Appearance	414
3. Histology	414
4. Differential Diagnosis of Necrolytic Migratory Erythema	415
II. Diabetes Mellitus	415
III. Anaemia	415
IV. Other Features	416
D. Biochemical Findings	416
I. Plasma Glucagon	416
1. Hyperglucagonaemia: Its Differential Diagnosis	416
2. Glucagon Secretory Patterns	417
II. Plasma Insulin	418
III. Glucose Tolerance	418
IV. Other Peptides Secreted by Glucagonomas	418
V. Plasma Amino Acids	419
E. Tumour Characteristics	419
I. Tumours Associated with the Glucagonoma Syndrome	419
1. Site and Spread	419
2. Light Microscopy	419
3. Immunofluorescence	419
4. Neuron Specific Enolase	421
5. Electron Microscopy	421
II. Tumours not Associated with the Glucagonoma Syndrome	423
F. Localisation of Tumours	423
I. Arteriography	424
II. Percutaneous Transhepatic Portal Venous Sampling	424
III. Other Techniques	424
G. Diagnosis and Treatment	424
I. Surgery	424
II. Chemotherapy	425
III. Antisecretory Therapy	425
IV. Hepatic Artery Embolisation	425
V. Symptomatic Treatment	426
H. Prognosis	426
References	426

CHAPTER 44

Glucagon in Diabetes Mellitus. R. H. UNGER and L. ORCI. With 12 Figures	
A. A-cell Function in Human Diabetes	431
B. Relationships of A-cell Malfunction to Insulin	432
C. The Islets in Diabetes: A-cell Relationships Within the Islets	434
D. The Effects of Insulin on the A-cell Abnormalities of Type I Diabetics	436
E. The Effects of Insulin on A-cell Abnormalities of Type II Diabetics .	437
F. The Bihormonal Abnormality Hypothesis	439
G. The "Glucagon Controversy"	443
H. Glucagon Suppression as a Therapeutic Adjunct in Diabetes	446
References	447

CHAPTER 45

Glucagon in Human Endocrine and Exocrine Disorders. A. M. LAWRENCE	
A. Introduction	451
B. Human Endocrine Metabolic Disorders	451
I. Hypoglycemia	451
1. Hypoglycemia in Infancy and Childhood	452
2. Reactive Hypoglycemia	452
3. Hypoglycemia in Diabetes and in Chronic Pancreatitis .	453
4. Glucagon Antibodies	453
5. Beta-Adrenergic Blockade	454
II. Hyperglucagonemia	454
1. Glucagonoma	454
2. Nonislet Glucagon-Secreting Tumors	455
3. The Multiple Endocrine Neoplasia	455
III. Pheochromocytoma	455
IV. Pituitary Interrelationships	456
1. Acromegaly	456
2. Hypopituitarism	456
V. Glucagon and the Parathyroid Glands	457
1. Hyperparathyroidism	457
2. Hypoparathyroidism	458
VI. Glucagon and Other Endocrine Diseases	458
1. Cushing's Syndrome	458
2. Hyperthyroidism	458
3. Hypothyroidism	458
4. Addison's Disease	458
VII. Comment	459
C. Glucagon and the Exocrine Pancreas	459
I. Interplay with the Islets of Langerhans	459
II. Insulin and Glucagon in Pancreatic Exocrine Fluid	460
III. Pancreatitis	461
References	462

CHAPTER 46

Glucagon and Hyperlipoproteinemas. R. P. EATON

A. Introduction	467
B. The Glucagon-Insulin Environment	467
C. Studies in the Zucker Genetic Hyperlipemic Rat	468
I. Glucagon Secretion	468
II. Glucagon Regulation	468
III. Effect of Reduced Glucagon	469
IV. Effect of Elevated Insulin	470
D. Studies in Human Hyperlipemia	470
I. Immunoassayable Glucagon	470
II. Hypolipemic Response to Glucagon	470
III. Glucagon Structure-Function Relationships	471
IV. Response to Therapy	472
E. The Mechanism of the Hypolipemic Response to Glucagon	472
References	473

CHAPTER 47

Glucagon and Renal Insufficiency

J. B. JASPAN, K. S. POLONSKY, and A. H. RUBENSTEIN. With 3 Figures

A. Introduction	477
B. The Effects of Renal Failure on Circulating Glucagon Levels and Molecular Profiles	478
C. The Effects of Renal Failure on Glucagon Secretion, Biologic Action, and Receptor Binding	479
I. Glucagon Secretion	479
II. Biologic Activity	482
III. Receptor Binding	482
D. The Role of Abnormalities in Glucagon Levels and Action in the Metabolic Disturbances of Uremia	484
I. Glucose Intolerance	484
1. Hyperglucagonemia and Hepatic Glucose Production	484
2. Increased Tissue Sensitivity to Glucagon	484
II. Hypoglycemia	486
E. Summary and Conclusions	486
References	487

CHAPTER 48

Glucagon in Cirrhosis of the Liver. J. MARCO. With 5 Figures

A. Introduction	491
B. Plasma Glucagon Levels in Cirrhotic Patients	491
I. In the Basal State	491
II. After A-cell Stimulation	492
III. After A-cell Inhibition	493

C. The Cause of Hyperglucagonism in Cirrhotic Patients	494
I. The Role of Portasystemic Shunting	495
II. The Role of Hepatocellular Damage	498
III. Other Factors	499
D. Plasma Glucagon-Like Immunoreactivity Levels in Cirrhotic Patients	499
E. The Nature of Circulating Immunoreactive Glucagon in Cirrhotic Patients	500
F. Pathogenic Implications of Hyperglucagonemia in Cirrhosis of the Liver	501
G. Summary	502
References	503

CHAPTER 49

Glucagon in Obesity. J. J. HOLST. With 1 Figure

A. Introduction	507
B. Glucagon in Human Obesity	507
I. Plasma Concentrations of Glucagon	507
1. Basal State	507
2. Tests of A-cell Function	509
II. Effect of Glucagon in Human Obesity	511
C. Experimental Obesity	512
I. The Obese Mouse	514
II. The Zucker Rat	515
III. Rats with Dietary Obesity	515
IV. VMH Rats	516
D. Extrapancreatic Glucagon in Obesity	516
References	517

Pharmacological Effects of Glucagon and the Use of Glucagon for Diagnosis and in Therapeutics

CHAPTER 50

Influence of Glucagon on Water and Electrolyte Metabolism. J. KOLANOWSKI

A. Introduction	525
B. The Kidney as a Target Site for Glucagon Action on Water and Mineral Metabolism	525
I. Renal Extraction, Handling, and Metabolism of Glucagon	525
II. Direct Effect of Glucagon on Renal Function	526
1. Glucagon-Induced Increase in the Glomerular Filtration Rate	526
2. Influence of Glucagon on Renal Hemodynamics	527
3. Postulated Direct Effect of Glucagon on Tubular Function	528
C. The Influence of Glucagon on Natriuresis of Starvation	530
D. The Effect of Glucagon on Plasma Electrolyte Levels	532
I. Hypocalcemic Effect of Glucagon	532
II. Glucagon-Induced Decrease in Plasma Phosphate Levels	532
III. Influence of Glucagon on Plasma Potassium Levels	533
E. Summary and Conclusions	533
References	534

CHAPTER 51

Glucagon and Catecholamines. P. J. LEFEBVRE and A. S. LUYCKX

With 1 Figure

A. Introduction	537
B. Glucagon and Catecholamine Release In Vitro	537
C. Glucagon and Catecholamine Release In Vivo	537
I. Rats	537
II. Guinea Pigs	538
III. Dogs	538
IV. Cats	538
V. Humans	538
1. Plasma Catecholamines	538
2. Urinary Catecholamines and Metabolites	539
D. Glucagon and Pheochromocytoma	539
I. Glucagon as a Provocative Test in Pheochromocytoma	539
II. Mode of Action of Glucagon in Pheochromocytoma	541
E. Conclusions	542
References	542

CHAPTER 52

Glucagon and Growth Hormone. T. J. MERIMEE. With 1 Figure

A. Introduction	545
B. Acute and Chronic Effects of Growth Hormone on Glucagon Secretion	545
C. Effect of Glucagon on Growth Hormone Secretion	548
D. Summary	549
References	550

CHAPTER 53

Glucagon and the Heart. A. E. FARAH. With 8 Figures

A. Introduction	553
B. Effects of Glucagon on Mechanical and Electrophysiologic Properties	553
I. Cardiac Contractility and Rate	553
II. Atrioventricular Conduction and Idioventricular Rhythms	558
III. Cardiac Action Potentials	561
IV. Coronary Blood Flow and Cardiac Oxygen Consumption	561
C. Factors Which Influence Inotropic and Chronotropic Effects	563
I. Species Differences	563
II. Temperature Effects	566
III. Rate-Force Relationship	567
IV. Heart Failure	567
V. Hypertension	569
VI. Age	570
VII. Ionic Composition	571
VIII. Adrenergic Blocking Agents	572

IX. The Interaction of Glucagon with Phosphodiesterase Inhibitors	573
X. Interaction of Glucagon with Cardiac Glycosides	573
D. Glucagon and Cyclic AMP Formation in Cardiac Muscle	574
E. Glucagon, Cyclic AMP, and Calcium Ion Fluxes	577
F. Effects of Glucagon on Cardiac Carbohydrate Metabolism	580
G. Effects of Glucagon on Cardiac Lipid Metabolism	581
H. Relation of the Metabolic Effects of Glucagon to Cardiac Potassium Metabolism	583
J. Glucagon-Receptor Interactions	583
K. Desensitization	586
L. Clinical Studies with Glucagon	588
M. Conclusions	593
References	594

CHAPTER 54

Spasmolytic Action and Clinical Use of Glucagon

B. DIAMANT and J. PICAZO

A. Spasmolytic Effects of Glucagon in Various Species	611
I. Mechanisms of Action	611
II. Structure-Activity Relationships	619
III. Conclusions	620
B. Clinical Use of Glucagon as a Spasmolytic or Hypotonic Drug	620
I. Diagnostic Applications of Glucagon	620
1. Radiology	620
a) Esophagus	621
b) Stomach	621
c) Duodenum	621
d) Small Intestine	622
e) Large Intestine	622
f) Biliary System	623
g) Arterial System	624
h) Urinary System	625
j) Oviduct	625
2. Computerized Axial Tomography	625
3. Ultrasonography	626
4. Endoscopy	626
a) Esophagogastroduodenoscopy	627
b) Colonoscopy	627
5. Endoscopic Retrograde Cholangiopancreatography	627
II. Therapeutic Applications of Glucagon	628
1. Gastroenterology	628
a) Esophagus	628
b) Small Intestine	629
c) Large Intestine	629
d) Extrahepatic Biliary Tree	630

2. Arterial System	632
a) Hepatic Ischemia	632
b) Gastrointestinal Ischemia	632
c) Nonocclusive Mesenteric Ischemia	633
d) Peripheral Vascular Disease	633
3. Urinary System	633
C. Closing Remarks	634
References	634

CHAPTER 55

Glucagon in the Diagnosis and Treatment of Hypoglycaemia. V. MARKS

A. Introduction	645
B. Normal Response to Glucagon	645
I. Blood Glucose	645
II. Plasma Insulin	645
C. Glucagon in the Treatment of Hypoglycaemia	646
I. Insulin-Induced Hypoglycaemia	647
1. Insulin Coma Therapy	647
2. Accidental Hypoglycaemia	647
II. Sulphonylurea-Induced Hypoglycaemia	648
III. Spontaneous Hypoglycaemia	649
1. Recovery from Coma	649
2. Treatment and Prevention of Recurrent Attacks	650
IV. Current Status of Glucagon for Treatment of Hypoglycaemia	652
D. Glucagon in the Diagnosis of Hypoglycaemia	652
I. Differential Diagnosis of Hypoglycaemia	652
1. In Adults	653
2. In Children	654
II. Glycogen Storage Disease	656
1. Type I (Glucose-6-Phosphatase Deficiency)	656
2. Type III (Debrancher Enzyme Deficiency)	657
3. Types VI (Liver Phosphorylase Deficiency) and IX (Phosphorylase Kinase Deficiency)	657
4. Glycogen Synthase Deficiency	657
5. Other Types of Glycogen Storage Disease	658
III. Disorders of Gluconeogenesis	658
IV. Sugar-Induced Hypoglycaemia	658
V. Liver Disease	659
E. Conclusions	659
References	660

CHAPTER 56

Miscellaneous Pharmacologic Effects of Glucagon. P. J. LEFEBVRE

A. Introduction	667
B. The Antiinflammatory Action of Glucagon	667

I. In Animal Experiments	667
II. In Humans	668
C. The Effect of Glucagon on Food Intake and Body Weight	668
D. Glucagon as a Bronchodilator	669
E. The Effect of Glucagon on Erythropoiesis	669
F. Glucagon as an Antitumoral Agent	670
G. Other Effects of Glucagon: Paget's Disease of Bone and Muscular Dystrophy	670
References	670
Subject Index	673