

Contents

List of Abbreviations	XXVII
---------------------------------	-------

Screening and Toxicity of Anti-Inflammatory Drugs

CHAPTER 19

Screening and Assessment of the Potency of Anti-Inflammatory Drugs in vitro. R. J. GRYGLEWSKI. With 3 Figures

A. Introduction	3
B. Interaction With Non-Enzymic Proteins	3
I. Binding to Plasma Proteins	3
1. Displacement Reactions	4
2. Disulphide Interchange Reactions	4
3. Protection Against Protein Denaturation	4
4. Fibrinolytic Activity	5
II. Interaction With Biological Membranes	5
1. Effects on Erythrocyte Membrane	5
2. Effects on Lysosomal Membrane	6
3. Cytotoxic Properties	7
4. Effects on Leucocyte Migration	8
C. Interaction With Enzymic Proteins	8
I. General Considerations	8
II. Interaction With Enzymes Involved in Carbohydrate, Protein, and Nucleic Acid Metabolism	9
1. Carbohydrate, Protein, and Amino Acid Metabolism	9
2. Nucleic Acid and Nucleotide Metabolism	9
III. Inhibition of Prostaglandin Synthetase	10
1. Prostaglandin Synthetase System	10
2. Assay of Prostaglandin Synthetase Activity	11
3. Prostaglandin Synthetase Inhibitors	15
4. Inhibition of Platelet Aggregation	21
5. Effects on Smooth Muscle	25
D. Conclusions	26
References	27

CHAPTER 20

Inhibition of Erythema and Local Hyperthermia. K. F. SWINGLE, R. J. TRANCIK, and D. C. KVAM. With 4 Figures

A. Introduction	44
B. Ultraviolet (UV) Light and the Erythematous Response	45
C. Instrumentation	47
I. Light Sources for Induction of Erythema	47
II. Measurement of Erythema and Local Hyperthermia	47
1. Erythema	47
2. Skin Temperature	47
D. Procedures	50
I. Erythema	50
1. UV-Induced	50
2. Thurfyl Nicotinate-Induced	54
3. Miscellaneous Procedures for Producing Erythema	54
II. Local Hyperthermia	55
1. Local Hyperthermia in Paws of Rats Injected With Irritants	56
2. Local Hyperthermia in UV-Irradiated Skin	57
E. Inhibition of Erythema and Local Hyperthermia	58
I. UV-Induced Erythema	58
1. Systemic Administration of Drugs	58
2. Topically or Intradermally	62
II. Tetrahydrofurfuryl Nicotinate (THFN) Erythema	63
III. Other Erythemas	63
IV. Local Hyperthermia	63
F. Conclusion	69
References	70

CHAPTER 21

Oedema and Increased Vascular Permeability. C. G. VAN ARMAN

A. General Principles of Assays	75
I. Statistical Considerations in Assay Work	79
1. Relationship of Dose to Effect	79
2. Definition of ED ₅₀	79
3. Confidence Limits	79
4. Coefficient of Variation	80
5. The <i>g</i> Value	80
6. The Lambda Value, λ	80
7. Errors of Types I and II	80

B. Methods for Producing and Measuring Oedema and Increased Vascular Permeability	81
I. Oedemas of the Rat's Paw	81
1. Measurement	81
2. Agents Causing Paw Oedema; Characteristics of Oedemas Caused by Several Agents	82
II. Increased Vascular Permeability	86
III. Oedema in the Pleural Space	86
C. Conclusion	87
References	88

CHAPTER 22

Short-Term Drug Control of Crystal-Induced Inflammation. D. J. McCARTY.
With 4 Figures

A. Historical Aspects	92
B. Mechanism of Crystal-Induced Inflammation	93
I. Phagocytosis	93
II. Membranolysis	93
III. Inflammatory Mediators	96
IV. Chemotactic Factors	97
C. Experimental Models	98
I. Animal	98
II. Man	102
D. Therapy of Acute Attacks of Gout and Pseudogout	102
I. Gout	102
II. Pseudogout	102
E. Summary	104
References	104

CHAPTER 23

Experimental Models of Arthritis in Animals as Screening Tests for Drugs to Treat Arthritis in Man. M. E. J. BILLINGHAM and G. E. DAVIES. With 2 Figures

A. Introduction	108
B. Advantages and Disadvantages of Models of Arthritis—Comparison With Acute Models	108
C. Adjuvant-Induced Arthritis	109
I. First Observation. First Use as a Screen for Anti-Inflammatory/Antirheumatic Drugs	110
II. Production	112
1. Adjuvant	112
2. Route of Injection	114

3. Species Variation and Strain Variation	114
4. Time Course of the Disease	115
III. Aetiology	116
1. Role of Lymphatic System	116
2. Immunological Mechanisms	116
3. Histology	117
4. Lysosomal Enzymes	118
IV. Assessment	118
1. Physical Assessment—Gross Measurements	119
2. Physiological/Functional Parameters	120
3. Biochemical Parameters	120
4. Period of Dosing of Compounds	123
V. Effect of Drugs	124
1. Non-Steroid Anti-Inflammatory Drugs	124
2. Steroid Anti-Inflammatory Drugs	125
3. Gold, Chloroquine, and Penicillamine	125
4. Immunosuppressant Drugs	127
5. Antilymphocytic Serum, Antigens	127
6. Non-Specific Inhibition	129
7. The Effect of Adjuvant Arthritis on Drugs	130
D. Arthritis Produced by Intra-Articular Injection of Antigens and Antibodies	131
E. Arthritis Produced by Intra-Articular Injection of Lysosome Labilisers	133
F. Arthritis Induced by Infectious Agents	134
E. Conclusions	134
References	135

CHAPTER 24

Antagonism of Bradykinin Bronchoconstriction by Anti-Inflammatory Drugs.

P. J. PIPER and J. R. VANE

A. Introduction	145
B. Production of Kinins and Other Mediators of Anaphylaxis in the Lungs	146
I. In vitro	146
II. In vivo	146
III. Release of Catecholamines in vivo	146
C. Action of Bradykinin on Lung Function	147
I. Bronchial Smooth Muscle in vitro and in vivo	147
II. Pulmonary Circulation	148
D. Release of Prostaglandins and Precursors From Lungs by Bradykinin	148
E. Actions of Prostaglandins in the Lungs	150
I. Bronchial Smooth Muscle	150
F. Interaction of Bradykinin With Prostaglandins in the Lungs	153
I. As a Mediator	153
II. As a Potentiator	153
III. As a Mediator of Vascular Leakage	154

G. Metabolism of Kinins in the Pulmonary Circulation	154
H. Inhibition of Bronchoconstriction by Anti-Inflammatory Acids	155
I. In vivo and in vitro Studies	155
II. Comparison With Other Bronchoconstrictor Agents	156
I. Possible Actions and Interactions of Kinins and Prostaglandins in Asthma	157
J. Summary and Conclusions	158
References	158

CHAPTER 25

Interference of Anti-Inflammatory Drugs With Hypotension. B. B. VARGAFTIG.
With 11 Figures

Introduction	164
A. Interference of Non-Steroidal Anti-Inflammatory Drugs With Hypotensive Effects of Potential Inflammatory Mediators	164
I. Kinin Peptides	164
II. Prostaglandins	165
B. Interference by Non-Steroidal Anti-Inflammatory Drugs With the Hypotensive Effects of Agents That Release Potential Inflammatory Mediators	166
I. Proteolytic Enzymes	166
1. Kininogenases	167
2. Thrombin	168
3. Other Proteolytic Enzymes	169
II. Inhibition of Hypotension Due to Substances That Activate Plasma Kininogenase	169
1. Carrageenin	169
2. Other Activators of Plasma Kininogenase	171
III. Phospholipase A ₂	171
C. Interference of Anti-Inflammatory Drugs With Hypotensive Responses to Lipid Derivatives	173
I. Effects of Arachidonic Acid on Arterial Blood Pressure	174
1. Mechanism of Action of Arachidonic Acid on Blood Pressure	174
II. Effects of Fatty Acids Other Than Prostaglandin Precursors	180
III. Slow Reacting Substance C	181
1. Mechanism of Action of Slow Reacting Substance C	184
D. Interference of Non-Steroidal Anti-Inflammatory Agents With Effects of Miscellaneous Agents	185
I. Adenosine Nucleotides	185
II. Collagen	186
III. Anaphylatoxin	187
IV. Depressor Active Substance (DAS)	187
V. Platelet Clumping Substance	187
VI. Barium Sulphate and Other Particulate Materials	187

E. Interference of Non-Steroidal Anti-Inflammatory Agents With Hypotension in Endotoxin Shock	188
I. Dogs	188
II. Cats	188
III. Other Animal Species	190
F. Mechanism of Action of Hypotensive Agents Liable to Inhibition by Non-Steroid Anti-Inflammatory Drugs	190
I. Structure-Activity Correlations	190
1. Thiol and Anti-Oxidant Compounds	191
II. Stereospecificity	192
III. Mechanism of Action of Hypotensive Agents Subject to Inhibition by Non-Steroidal Anti-Inflammatory Drugs	194
1. Bradykinin	194
2. Collagen	194
3. Carrageenin	195
4. Adenosine Nucleotides	195
IV. Conclusions	196
1. Relevance of Hypotensive Responses to Inflammation and to Study of Inflammatory Events	196
2. Multisequential Activation and Acute Hypotensive Responses: Prospects of Research	197
References	198

CHAPTER 26

Antagonism of Pain and Hyperalgesia. R. VINEGAR, J. F. TRUAX, J. L. SELPH, and P. R. JOHNSTON. With 3 Figures

A. Introduction	209
I. Terminology	209
II. Historical Introduction to Analgesic Testing in Hyperalgesic Animals	210
B. Non-Hyperalgesic Mild Analgesic Assays	218
I. Stretching Tests	218
C. Assessment of Mild Analgesia in Humans	219
I. Clinical Evaluation of Mild Analgesic Agents	219
D. Conclusion	220
References	221

CHAPTER 27

Inhibition of Cell Migration in vivo and Granuloma Formation. M. DI ROSA

A. General Introduction	223
I. Mechanisms of Cell Migration	223
II. The Sequence of Cell Migration	225

III. Fate of Emigrated Cells	225
1. Polymorphs	225
2. Mononuclear Cells	226
IV. Granuloma Formation and Evolution	227
B. Models for Leucocyte Emigration in vivo	228
I. Generalities	228
II. Histological Method	229
III. Cell Collection From Cavities	229
1. Natural Cavities	229
2. Artificial Cavities	231
IV. Cell Collection From Early Granulomata	232
V. Cell Labelling	232
C. Models for Granuloma Formation in vivo	233
I. Cotton-Pellet Granuloma	233
II. Granuloma Pouch	234
III. Carrageenin Granuloma	235
IV. Plastic Ring Granuloma	235
V. Filter Paper Granuloma	235
D. Inhibition of Cell Migration in vivo	236
I. Steroids	236
1. Neutrophils	236
2. Mononuclear Cells	237
II. Non-Steroid Anti-Inflammatory Drugs	238
III. Immunosuppressive Agents	240
IV. Endogenous Substances	241
E. Inhibition of Granuloma Formation	242
I. Steroid Anti-Inflammatory Drugs	242
II. Non-Steroid Anti-Inflammatory Drugs	243
III. Immunosuppressive Agents	243
IV. Endogenous Substances	244
F. Conclusions	244
References	245

CHAPTER 28

Inhibition of Fever. C. ROSENDORFF and C. J. WOOLF. With 3 Figures

A. Introduction	255
B. Pathogenesis of Fever	255
I. Exogenous and Endogenous Pyrogen	255
II. Site of Action of Pyrogens	256
III. Mechanism of Action of Pyrogens	257
1. Change in Set-Point or Gain?	257
2. Role of Prostaglandins	257
3. Role of Monoamines and Cyclic-AMP	258
4. Ionic Mechanisms in Fever	259

C. Antipyretics	259
I. Possible Sites of Action of Antipyretics	260
1. Inactivation of Bacterial Pyrogen (Site I)	261
2. Inhibition of Endogenous Pyrogen Production or Release (Site II)	261
3. Inhibition of Endogenous Pyrogen Activity (Site III)	262
4. Access of Endogenous Pyrogen to the Central Nervous System (Site IV)	262
5. Hypothalamic Thermoregulatory Centres (Site V)	262
6. Suppression of Heat Production (Site VI)	262
II. Possible Mechanisms of Antipyretic Action	264
1. Inhibition of Prostaglandin Synthesis/Release	264
2. Competitive Antagonism Between Pyrogens and Antipyretics for a Receptor Site	265
3. Alteration in the Activity of Neurones in the Hypothalamus	266
III. Antipyresis	271
D. Inhibition of Fever by Other Means	271
I. Increased Heat Loss	271
II. Monoamine Blockade and Depletion	272
III. Cholinergic Blockade	272
E. Conclusion	272
References	274

CHAPTER 29

Evaluation of the Toxicity of Anti-Inflammatory Drugs. P. W. DODGE, D. BRODIE, and B. D. MITCHELL

A. Introduction	280
I. Historical Overview	280
B. Evaluation of Toxicity in Man	281
I. Gastrointestinal Tract	282
II. Central Nervous System	283
III. Dermatological Disorders	283
IV. Haematopoietic System	283
V. Ocular Disturbances	284
VI. Renal Side Effects	284
VII. Miscellaneous Side Effects	284
C. Methods Used to Evaluate Toxicity in Animals	284
I. Gastrointestinal	285
II. Kidney	286
III. Haematopoietic System	287
IV. Liver	287
V. Skin	288
VI. Eye	289
VII. Central Nervous System	289

D. Correlation of Experimental Models With Clinical Toxicity	289
I. Non-Steroid Anti-Inflammatory Drugs	289
1. Salicylates	289
2. Indomethacin	292
3. Phenylbutazone	293
4. Arylalkanoic Acids	293
5. Gold	294
II. Steroids	294
E. Summary	295
References	296

Pharmacology of the Anti-Inflammatory Agents

CHAPTER 30

Prostaglandin Synthetase Inhibitors I. T. Y. SHEN. With 1 Figure

A. Introduction	305
B. Inhibition of Synthetase by Substrate Analogues and Fatty Acid Derivatives	308
I. Unsaturated Fatty Acids	308
II. Bicyclic Analogues	310
C. Regulation of Enzymic Factors: Co-Factors, Stimulation, and Catabolism	310
I. Regulation of Biosynthesis	310
II. Catabolic Enzymes	313
D. Inhibition by Non-Steroid Anti-Inflammatory Agents	313
I. An Overview of Structure-Activity Relationship	313
1. Correlation of PG Synthetase Inhibition With Anti-Inflammatory Action	313
2. General Structure-Activity Relationship	315
II. Salicylates	316
III. Indomethacin, Sulindac, and Congeners	317
IV. Substituted Aryl Aliphatic Acids	321
V. Fenamates	323
VI. Other Acidic Anti-Inflammatory Agents	325
VII. Non-Acidic Anti-Inflammatory Agents	327
E. Effects of Corticosteroids	329
F. Inhibition and Stimulation by Other Pharmacological Agents	329
I. Anti-Arthritic and Related Compounds	329
II. Psychotropic Drugs	331
III. Sulphydryl Reagents and Derivatives	332
IV. Hormones and Mediators	333
V. Inactive Pharmacological Agents	334
G. The Search for New Inhibitors	335
I. Current Research Trend	335
II. Biochemical and Physiological Specificity	336
III. Pharmacodynamic and Metabolic Control	337

IV. Multiple-Action Inhibitors	338
V. Synthetic and Physicochemical Approaches	339
H. Pharmacokinetics of Prostaglandin Synthetase Inhibitors	340
I. Conclusion	341
References	342

CHAPTER 31

Mode of Action of Anti-Inflammatory Agents Which are Prostaglandin Synthetase Inhibitors. S. H. FERREIRA and J. R. VANE. With 2 Figures

A. Mediators and Inflammatory Responses	348
B. Mechanism of Anti-Inflammatory Action	351
I. Action on Step 1: Diminution of the Capability of Tissue Cells to Respond to Inflammatory Mediators	352
1. Increased Dilatation and Vascular Permeability	353
2. Pain and Hyperalgesia	354
3. Increased Fibroblast Proliferation and Secretion	354
II. Action on Step 2: Pharmacological Receptor Antagonism	355
III. Action on Step 3: Inhibition of Extracellular Enzymic Activities Which Generate Inflammatory Mediators or Cause Injury to Cell Membranes and/or Tissue Components	356
IV. Action on Step 4: Inhibition of the Release of Intracellular Lytic Enzymes or Mediator-Genases or Stored Receptor-Mediators	358
V. Action on Step 5: Inhibition of the Synthesis of Inflammatory Mediators	360
1. Prostaglandin Synthesis and Release	361
2. Prostaglandins and Inflammatory Signs and Symptoms	363
3. Correlation Between <i>in vitro</i> Inhibition of Prostaglandin Synthesis and Anti-Inflammatory Activity	368
4. Inhibition of Prostaglandin Synthesis <i>in vivo</i> and Inflammatory Signs and Symptoms	370
VI. Action on Step 6: Inhibition of Cell Migration	374
VII. Action on Step 7: Inhibition of the Generation of the Effective Inflammatory Trauma	375
C. Side-Effects of Anti-Inflammatory Drugs Which are Prostaglandin Synthetase Inhibitors	376
D. Theories and Theories	379
References	383

CHAPTER 32

Penicillamine and Drugs With a Specific Action in Rheumatoid Arthritis. E. C. HUSKISSON. With 8 Figures

A. Classification of Antirheumatic Drugs	399
B. Penicillamine	400
I. Actions in Man	400
II. Possible Mode of Action and Effects in Animal Models	404

C. Gold Salts	405
D. Chloroquine and Other Antimalarials	406
E. Levamisole	407
F. Other Imidazole Derivatives	409
G. Immunosuppressives	410
H. Alclofenac	410
I. Steroids	411
J. Summary	411
References	412

CHAPTER 33

Antagonists of Histamine, 5-Hydroxytryptamine and SRS—A. A. F. GREEN, L. G. GARLAND, and H. F. HODSON. With 11 Figures

A. Classification of Antihistamines	415
B. Histamine H ₁ Antagonists: Structure-Activity Relationships	415
C. Histamine H ₁ Antagonists: Inhibition of Responses to Histamine Involved in Inflammatory and Anaphylactic Reactions	419
I. Guinea Pig	421
II. Rat	421
III. Rabbit	422
IV. Mouse	422
V. Man	422
D. Histamine H ₂ Antagonists: Chemical Considerations	423
E. Inhibition of Cardiovascular Responses to Histamine by H ₁ and H ₂ Antagonists	424
F. Chemical and Pharmacological Classes of 5-Hydroxytryptamine Antagonists	426
I. Chemical Classes	426
II. "M" and "D" Receptors	426
III. "Musculotropic" and "Neurotropic" Receptors	427
G. Antagonists of 5-Hydroxytryptamine: Inhibition of Responses to 5-HT Involved in Inflammatory and Anaphylactic Reactions	429
I. Guinea Pig	429
II. Rat	429
III. Rabbit	432
IV. Mouse	432
V. Man	432
H. Effects of Antagonists of Histamine (H ₁ Receptors) and 5-HT in Various Types of Inflammation	432
I. Guinea Pig	434
1. Thermal and Ultraviolet Injury	434
2. Local Anaphylaxis	436
3. Systemic Anaphylaxis	437
4. Compound 48/80 and Polymyxin B	439
5. Bradykinin	439

II. Rat	439
1. Thermal and Ultraviolet Injury	439
2. Local Anaphylaxis	441
3. Systemic Anaphylaxis	443
4. Compound 48/80, Polymyxin, Dextran, and Egg White	444
5. Turpentine Pleurisy	445
6. Carrageenin Oedema	446
7. Croton Oil	447
8. Bradykinin	447
III. Rabbit	447
1. Thermal Injury	447
2. Anaphylactic Reactions	447
3. Inflammation Associated With Bacterial Infections	448
IV. Mouse	448
1. General Anaphylaxis	448
2. Cutaneous Anaphylaxis	449
3. Other Local Inflammatory Reactions	450
4. Systemic Reactions Involving Inflammation	450
V. Man	451
1. Burns	451
2. Compound 48/80 and Polymyxin	451
3. Hypersensitivity States	451
4. Rheumatoid Arthritis and 5-HT Antagonists	451
VI. Bovine Anaphylaxis	452
I. Antagonists of SRS-A	452
I. Non-Steroid Anti-Inflammatory Drugs	453
II. Polyphloretin Phosphate (PPP)	454
III. FPL 55712	454
IV. Hydratropic Acids	455
J. Prospects for New Drugs	456
References	457

CHAPTER 34

Inhibitors of the Release of Anaphylactic Mediators. L. G. GARLAND, A. F. GREEN, and H. F. HODSON. With 26 Figures

A. Characteristics of Anti-Allergic Agents Discussed	467
B. Cromoglycate and Similar Compounds	467
I. Identification and Screening	467
1. The Passive Cutaneous Anaphylaxis Reaction (PCA) in Rats	468
2. Lung Anaphylaxis <i>in vivo</i>	471
3. Passive Peritoneal Anaphylaxis	472
4. Human Tissues <i>in vitro</i>	474
5. Rat Tissues <i>in vitro</i>	477

II. Structure-Activity Relationships	478
III. Anti-Allergic Properties	488
1. Tissue and Species Selectivity	488
2. Inhibition of Mast Cell Reactions Provoked by Stimuli Other Than Antigen-Antibody Interactions	497
3. Time Course Studies	500
4. Tachyphylaxis	504
IV. Studies of the Mechanism of Anti-Allergic Action	506
V. Other Pharmacological Effects	511
VI. Pharmacokinetics	511
C. Other Inhibitors of Mediator Release	512
I. Isosteres of Theophylline	512
1. Structure-Activity Relationships	512
2. Anti-Allergic Properties	514
II. Antihistamines and Histamine	515
III. Diethylcarbamazine	517
1. Rat Peritoneal Cells in vivo	517
2. Lung Tissue	518
3. Human Leucocytes	519
4. Passive Cutaneous Anaphylaxis Reactions	519
IV. Chlorphenesin	519
D. Prospects for New Drugs	520
References	520

CHAPTER 35

Cytostats With Effects in Chronic Inflammation. K. BRUNE and M. W. WHITEHOUSE.
With 1 Figure

A. Introduction	531
B. General Pharmacology of Cytostats Effective in Chronic Inflammation	534
I. „Immunosuppressants“	537
1. Alkylating Agents	540
2. Anti-Metabolites	545
II. Microtubular Inhibitors	547
1. Colchicine	548
C. Some Properties of Selected Compounds	552
I. Microtubular Inhibitors	552
1. Cytostatic Effects of Colchicine	552
II. Cyclophosphamide	553
1. Metabolism	553
2. Properties of Some Metabolites	558
3. Site of Action	559
4. Some Side-Effects	560

III. Chlorambucil	561
1. Metabolism	561
2. Anti-Inflammatory Effects	561
3. Mode of Action	561
IV. Methotrexate	562
V. Azathioprine	563
D. Current Problems	564
Appendix. Synovectomy and Destruction of Pannus	565
References	566
Addendum	577

CHAPTER 36

Control of Hyperuricemia. J. KOVARSKY and E. W. HOLMES. With 2 Figures

A. Introduction	579
B. Uric Acid Metabolism	579
C. Biochemical Pharmacology of Hypouricemic Drugs	581
I. Drugs Reducing Uric Acid Synthesis	581
1. Allopurinol and Oxipurinol	581
2. Thiopurinol	583
3. Other Inhibitors of Uric Acid Synthesis	584
II. Uricosuric Agents	584
III. Uricolytic Agents	587
D. Clinical Use of Hypouricemic Drugs	587
I. Criteria for Selecting a Hypouricemic Drug	587
II. Use of Individual Hypouricemic Drugs	588
III. Toxicity of Hypouricemic Agents	589
References	590

CHAPTER 37

Anti-Inflammatory Steroids: Mode of Action in Rheumatoid Arthritis and Homograft Reaction. M. K. JASANI. With 19 Figures

A. General Considerations	598
B. Scope of the Review	600
C. Naturally Occurring Anti-Inflammatory Steroids	602
D. Synthetic Anti-Inflammatory Steroids	604
E. Biological Activities Observed With Physiological Amounts of Cortisol-Like Steroids	604
I. Metabolic Effects	606
1. Gluconeogenesis	606
2. Protein Metabolism	606
3. DNA Synthesis	607
4. Molecular Basis for Metabolic Effects	608
5. Onset and Duration of Cortisol Action	609

6. Mechanism of Action of Cortisol	609
7. Glycogenolysis	610
8. Lipolysis	610
9. Relationship to Anti-Inflammatory, Anti-Allergic and Anti-Rheumatic Action	611
10. Relationship to Clinically Undesirable Effects	613
11. Implications for the Future	614
II. Sodium Retaining Activity	615
III. Control of Adrenocorticotrophic Hormone (ACTH) Synthesis and Secretion	617
1. Neuroendocrine Control	618
2. Negative Feedback Control	619
3. Basis for Negative Feedback Control	620
4. Role of Cytoplasmic Steroid Receptors	620
5. Relationship to Clinically Desirable Effects	620
6. Relationship to Clinically Undesirable Effects	621
IV. Cardiovascular Effects	622
1. Heart and Peripheral Blood Vessels in Adrenalectomised State	622
2. Microcirculation	622
3. Relationship to Anti-Inflammatory, Anti-Allergic, and Anti-Rheumatic Action	626
4. Relationship to Clinically Undesirable Effects	629
5. Pharmacological Implications	633
F. Mode of Action in Homograft Reaction	634
I. Interference With the Development of Circulating Sensitized Lymphocytes	639
II. Effectiveness Against Inflammation Due to Locally Sensitized Lymphocytes	641
III. Effectiveness Against Inflammation Due to Circulating Sensitized Lymphocytes	642
IV. Clinical Relevance of Experimental Observations	645
V. Relevance to Evaluation of More Effective Anti-Rejection and Anti-Rheumatic Drugs	646
G. Concluding Remarks	647
References	648

CHAPTER 38

Anti-Inflammatory Agents of Animal Origin. M. J. H. SMITH and A. W. FORD-HUTCHINSON

A. Introduction	661
B. Definition and Evaluation of Anti-Inflammatory Activity	661
C. Mechanisms of Action	663
D. Individual Agents	666
I. Alkoxyglycerols	666
II. N(2-hydroxyethyl) Palmitamide	667

III. Vitamins	668
IV. Amino Acids	669
V. Peptides	669
1. Peptide 401	669
2. Rabbit Skin Protease Inhibitor	671
3. Aprotinin (Trasylol)	671
VI. Proteins	672
1. Exogenous Enzymes	672
2. Orgotein	673
3. Inflamed Tissue Factors	675
4. Antileucotactic Agents	677
5. Antiproliferative Agents	680
6. Antilymphocytic Serum	681
VII. Tissue Hydrolysates	682
1. Catrix	682
2. Livingston Lysate	683
3. Lysoartrosi	683
VIII. Human Plasma Factor	684
IX. Prostaglandins	686
E. Summary and Conclusions	687
References	688

CHAPTER 39

Anti-Inflammatory Substances of Plant Origin. M. GÁBOR

A. Introduction	698
B. Anti-Inflammatory Action of Phenylbenzo- γ -Pyrone (Flavone) Derivatives	698
I. The Occurrence of Flavonoid Compounds in Nature	698
II. The Chemistry of Flavonoid Compounds	698
III. The Anti-Inflammatory Action of Flavonoids	701
1. Influence on Mouse and Rat Paw Oedema	701
2. Generalized Dextran Oedema in Rats	705
3. Generalized Phospholipase Oedema in Rats	705
4. Effect on the Development of the Granuloma Pouch	706
5. Inflammation Caused by Cotton Pellet	706
6. Erythema Produced by UV Radiation	707
7. Inflammation Produced by Mustard Oil	708
8. Influence on the Permeability-Increasing Action of Inflammatory Exudate	708
9. Influence on the Inflammation Produced by Red Paprika (<i>Capsicum annuum</i> L. Solanaceae)	709
10. Effect of Citrus Flavonoid Complex on Experimentally Induced Mucous Membrane Inflammation	709
11. Influence on Experimentally Induced Thrombophlebitis	710
12. Allergic and Hyperimmune Inflammation of the Skin and Joints .	711

13. Data on the Mechanism of the Anti-Inflammatory Effect of Flavonoids	711
14. Discussion	718
C. Anti-Inflammatory Activity of Natural Plant Coumarins (Benzo- α -Pyrones)	720
D. Anti-Inflammatory Activity of Natural Plant Triterpenoids	723
I. Escin	723
II. Gcyrrhetic Acid	724
III. Other Triterpenoids	725
E. Colchicine	725
F. Essential Components of Camomile	726
I. The Azulenes	726
II. (–)- α -Bisabolol	728
III. EN—IN—Dicycloether	729
IV. Flavonoids	729
G. Miscellaneous	729
References	730

CHAPTER 40

A Critical Comparison of the Evaluation of Anti-Inflammatory Therapy in Animal Models and Man. P. J. L. HOLT. With 1 Figure

A. Introduction	740
B. Comparison of Models of Inflammation With the Human Situation	742
C. Analysis of Parameters of Inflammation in Man	744
I. Stiffness	746
II. Pain	746
III. Joint Tenderness	747
IV. Grip Strength	747
V. Joint Size	748
VI. Blood Flow and Vascular Permeability	748
VII. Radiographic Changes	749
VIII. Tests of Functional Ability	750
IX. Laboratory Assessment of Disease Activity	750
D. Clinical Trials	751
I. Objectives	752
1. Improvement of Therapeutic Methods at Present Available	752
2. Optimum Benefit in a Patient	752
3. Improvement of Methods of Monitoring Inflammation in Patients	752
4. Development of New Human Models for the Evaluation of Drugs	752
5. Discovery of New Therapeutic Agents	753
6. Promotion of Scientific Management of Disease	753
II. Assessment	754
III. Patient Selection	755
IV. Placebo Response	757
V. Conclusions	758

E. Treatment	758
I. Rest	759
II. Heat	759
III. Exercise	759
IV. Anti-Inflammatory Therapy	760
1. Non-Steroid Anti-Inflammatory Drugs	760
2. Gold, Penicillamine, and Chloroquine	761
3. Corticosteroids	763
4. Cytotoxic (Immunosuppressant) Therapy	763
5. Local Anti-Inflammatory Therapy	763
6. Lymphocyte Depletion	764
7. Immune Potentiation	764
8. Removal of Antibody	764
9. X-Ray Irradiation	764
F. Summary	764
References	765
Author Index	767
Subject Index	863