

Contents

Preface xv

Part I Fundamentals 1

1 **Introduction to Laser-Induced Transfer and Other Associated Processes 3**
Pere Serra and Alberto Piqué

1.1 LIFT and Its Derivatives 3

1.2 The Laser Transfer Universe 5

1.3 Book Organization and Chapter Overview 8

1.4 Looking Ahead 12

Acknowledgments 13

References 13

2 **Origins of Laser-Induced Transfer Processes 17**
Christina Kryou and Ioanna Zergioti

2.1 Introduction 17

2.2 Early Work in Laser-Induced Transfer 17

2.3 Overview of Laser-Induced Forward Transfer 19

2.3.1 Transferring Metals and Other Materials with Laser-Induced Forward Transfer (LIFT) 21

2.3.2 Limitations of the Basic LIFT Technique 22

2.3.3 The Role of the Donor Substrate 22

2.3.4 Use of a Dynamic Release Layer (DRL)-LIFT 24

2.3.5 LIFT with Ultrashort Laser Pulses 25

2.4 Other Laser-Based Transfer Techniques Inspired by LIFT 27

2.4.1 Matrix-Assisted Pulsed Laser Evaporation-Direct Write (MAPLE-DW) Technique 27

2.4.2 LIFT of Composite Matrix-Based Materials 27

2.4.3 Hydrogen-Assisted LIFT 28

2.4.4 Long-Pulsed LIFT 28

2.4.5 Laser Molecular Implantation 29

2.4.6 Laser-Induced Thermal Imaging 30

2.5	Other Studies on LIFT	31
2.6	Conclusions	31
	References	32
3	LIFT Using a Dynamic Release Layer	37
	<i>Alexandra Palla Papavlu and Thomas Lippert</i>	
3.1	Introduction	37
3.2	Absorbing Release Layer – Triazene Polymer	40
3.3	Front- and Backside Ablation of the Triazene Polymer	42
3.4	Examples of Materials Transferred by TP-LIFT	43
3.5	First Demonstration of Devices: OLEDs and Sensors	47
3.5.1	Organic Light Emitting Diode (OLEDs)	47
3.5.2	Sensors	49
3.6	Variation of the DRL Approach: Reactive LIFT	52
3.7	Conclusions and Perspectives	54
	Acknowledgments	55
	Conflict of Interest	55
	References	55
4	Laser-Induced Forward Transfer of Fluids	63
	<i>Juan M. Fernández-Pradas, Pol Sopeña, and Pere Serra</i>	
4.1	Introduction to the LIFT of Fluids	63
4.1.1	Origin	64
4.1.2	Principle of Operation	65
4.1.3	Developments	66
4.2	Mechanisms of Fluid Ejection and Deposition	67
4.2.1	Jet Formation	67
4.2.2	Droplet Deposition	69
4.3	Printing Droplets through LIFT	72
4.3.1	Role of the Laser Parameters	72
4.3.2	Role of the Fluid Properties	76
4.3.3	Setup Parameters	76
4.4	Printing Lines and Patterns with LIFT	78
4.5	Summary	81
	Acknowledgments	82
	References	82
5	Advances in Blister-Actuated Laser-Induced Forward Transfer (BA-LIFT)	91
	<i>Emre Turkoz, Romain Fardel, and Craig B. Arnold</i>	
5.1	Introduction	91
5.2	BA-LIFT Basics	93
5.3	Why BA-LIFT?	94
5.4	Blister Formation	97
5.4.1	Dynamics of Blister Formation	97
5.4.2	Finite Element Modeling of Blister Formation	102

5.5	Jet Formation and Expansion	105
5.5.1	Computational Fluid Dynamics Model	106
5.5.2	Effect of the Laser Energy	108
5.5.3	Effect of the Ink Film Properties	111
5.6	Application to the Transfer of Delicate Materials	113
5.7	Conclusions	117
	References	117
6	Film-Free LIFT (FF-LIFT)	123
	<i>Salvatore Surdo, Alberto Diaspro, and Martí Duocastella</i>	
6.1	Introduction	123
6.2	Rheological Considerations in Traditional LIFT of Liquids	125
6.2.1	The Challenges behind the Preparation of a Thin Liquid Film	125
6.2.1.1	The Role of Spontaneous Instabilities	126
6.2.1.2	The Role of External Instabilities	128
6.2.2	Technologies for Thin-Film Preparation	129
6.2.3	Wetting of the Receiver Substrate	130
6.3	Fundamentals of Film-Free LIFT	131
6.3.1	Cavitation-Induced Phenomena for Printing	131
6.3.2	Jet Formation in Film-Free LIFT	132
6.3.3	Differences with LIFT of Liquids	134
6.4	Implementation and Optical Considerations	135
6.4.1	Laser Source	135
6.4.2	Forward (Inverted) versus Backward (Upright) Systems	136
6.4.3	Spherical Aberration and Chromatic Dispersion	137
6.5	Applications	138
6.5.1	Film-Free LIFT for Printing Biomaterials	139
6.5.2	Film-Free LIFT for Micro-Optical Element Fabrication	140
6.6	Conclusions and Future Outlook	141
	References	142
Part II The Role of the Laser–Material Interaction in LIFT 147		
7	Laser-Induced Forward Transfer of Metals	149
	<i>David A. Willis</i>	
7.1	Introduction, Background, and Overview	149
7.2	Modeling, Simulation, and Experimental Studies of the Transfer Process	151
7.2.1	Thermal Processes: Film Heating, Removal, Transfer, and Deposition	151
7.2.2	Parametric Effects	153
7.2.2.1	Laser Fluence and Film Thickness	154
7.2.2.2	Donor-Film Gap Spacing	156
7.2.2.3	Pulse Width	157

7.2.3	Droplet-Mode Deposition	160
7.2.4	Characterization of Deposited Structures: Adhesion, Composition, and Electrical Resistivity	163
7.3	Advanced Modeling of LIFT	165
7.4	Research Needs and Future Directions	167
7.5	Conclusions	169
	References	170
8	LIFT of Solid Films (Ceramics and Polymers)	175
	<i>Ben Mills, Daniel J. Heath, Matthias Feinaeugle, and Robert W. Eason</i>	
8.1	Introduction	175
8.2	Assisted Release Processes	176
8.2.1	Optimization of LIFT Transfer of Ceramics via Laser Pulse Interference	176
8.2.1.1	Standing-Wave Interference from Multiple Layers	176
8.2.1.2	Ballistic Laser-Assisted Solid Transfer (BLAST)	177
8.2.2	LIFT Printing of Premachined Ceramic Microdisks	180
8.2.3	Spatial Beam Shaping for Patterned LIFT of Polymer Films	181
8.3	Shadowgraphy Studies and Assisted Capture	184
8.3.1	Shadowgraphic Studies of the Transfer of Ceramic Thin Films	184
8.3.2	Application of Polymers as Compliant Receivers	186
8.4	Applications in Energy Harvesting	188
8.4.1	LIFT of Chalcogenide Thin Films	189
8.4.2	Fabrication of a Thermoelectric Generator on a Polymer-Coated Substrate	190
8.5	Laser-Induced Backward Transfer (LIBT) of Nanoimprinted Polymer	193
8.5.1	Unstructured Carrier Substrate	195
8.5.2	Structured Carrier Substrate	195
8.6	Conclusions	197
	Acknowledgments	197
	References	197
9	Laser-Induced Forward Transfer of Soft Materials	199
	<i>Zhengyi Zhang, Ruitong Xiong, and Yong Huang</i>	
9.1	Introduction	199
9.2	Background	200
9.3	Jetting Dynamics during Laser Printing of Soft Materials	201
9.3.1	Jet Formation Dynamics during Laser Printing of Newtonian Glycerol Solutions	202
9.3.1.1	Typical Jetting Regimes	202
9.3.1.2	Jetting Regime as Function of Fluid Properties and Laser Fluence	204
9.3.1.3	Jettability Phase Diagram	206
9.3.2	Jet Formation Dynamics during Laser Printing of Viscoelastic Alginate Solutions	208
9.3.2.1	Ink Coating Preparation and Design of Experiments	208
9.3.2.2	Typical Jetting Regimes	209

9.3.2.3	General Observation of the Jetting Dynamics	212
9.3.2.4	Effects of Laser Fluence on Jetting Dynamics	212
9.3.2.5	Effects of Alginate Concentration on Jetting Dynamics	214
9.3.2.6	Jettability Phase Diagram	215
9.4	Laser Printing Applications Using Optimized Printing Conditions	218
9.5	Conclusions and Future Work	220
	Acknowledgments	221
	References	222
10	Congruent LIFT with High-Viscosity Nanopastes	227
	<i>Raymond C.Y. Auyeung, Heungssoo Kim, and Alberto Pique</i>	
10.1	Introduction	227
10.2	Congruent LIFT (or LDT)	229
10.3	Applications	235
10.4	Achieving Congruent Laser Transfers	242
10.5	Issues and Challenges	245
10.6	Summary	246
	Acknowledgment	247
	References	247
11	Laser Printing of Nanoparticles	251
	<i>Urs Zywietsz, Tim Fischer, Andrey Evlyukhin, Carsten Reinhardt, and Boris Chichkov</i>	
11.1	Introduction, Setup, and Motivation	251
11.2	Laser-Induced Transfer	252
11.3	Materials for Laser Printing of Nanoparticles	254
11.4	Laser Printing from Bulk-Silicon and Silicon Films	254
11.5	Magnetic Resonances of Silicon Particles	261
11.6	Laser Printing from Prestructured Films	261
11.7	Applications: Sensing, Metasurfaces, and Additive Manufacturing	263
11.8	Outlook	266
	References	266
	Part III Applications	269
12	Laser Printing of Electronic Materials	271
	<i>Philippe Delaporte, Anne-Patricia Alloncle, and Thomas Lippert</i>	
12.1	Introduction and Context	271
12.2	Organic Thin-Film Transistor	272
12.2.1	Operation and Characteristics of OTFTs	272
12.2.2	Laser Printing of the Semiconductor Layer	275
12.2.3	Laser Printing of Dielectric Layers	277
12.2.4	Laser Printing of Conducting Layers	279

12.2.5	Single-Step Printing of Full OTFT Device	279
12.3	Organic Light-Emitting Diode	281
12.4	Passive Components	285
12.5	Interconnection and Heterogeneous Integration	287
12.6	Conclusion	290
	References	291
13	Laser Printing of Chemical and Biological Sensors	299
	<i>Ioanna Zergioti</i>	
13.1	Introduction	299
13.2	Conventional Printing Methods for the Fabrication of Chemical and Biological Sensors	300
13.2.1	Contact Printing Methods	301
13.2.1.1	Pin Printing Approach	301
13.2.1.2	Microcontact Printing (or Microstamping) Technique	302
13.2.1.3	Nanotip Printing	303
13.2.2	Noncontact Printing Methods	303
13.2.2.1	Photochemistry-Based Printing	303
13.2.2.2	Inkjet Printing Technique	304
13.2.2.3	Electrospray Deposition (ESD)	304
13.3	Laser-Based Printing Techniques: Introduction	305
13.3.1	Laser-Induced Forward Transfer	305
13.3.2	LIFT of Liquid Films	307
13.4	Applications of Direct Laser Printing	308
13.4.1	Biosensors	308
13.4.1.1	Background	308
13.4.1.2	Printing of Biological Materials for Biosensors	309
13.4.2	Chemical Sensors	316
13.5	Conclusions	319
	List of Abbreviations	319
	References	320
14	Laser Printing of Proteins and Biomaterials	329
	<i>Alexandra Palla Papavlu, Valentina Dinca, and Maria Dinescu</i>	
14.1	Introduction	329
14.2	LIFT of DNA in Solid and Liquid Phase	332
14.3	LIFT of Biomolecules	333
14.3.1	Streptavidin and Avidin–Biotin Complex	333
14.3.2	Amyloid Peptides	337
14.3.3	Odorant-Binding Proteins	339
14.3.4	Liposomes	340
14.4	Conclusions and Perspectives	343
	Acknowledgments	343
	Conflict of Interest	343
	References	344

15	Laser-Assisted Bioprinting of Cells for Tissue Engineering	349
	<i>Olivia Kérourédan, Murielle Rémy, Hugo Oliveira, Fabien Guillemot, and Raphaël Devillard</i>	
15.1	Laser-Assisted Bioprinting of Cells	349
15.1.1	The History of Cell Bioprinting and Advantages of Laser-Assisted Bioprinting for Tissue Engineering	349
15.1.2	Technical Specifications of Laser-Assisted Bioprinting of Cells	353
15.1.3	Effect of Laser Process and Printing Parameters on Cell Behavior	356
15.2	Laser-Assisted Bioprinting for Cell Biology Studies	358
15.2.1	Study of Cell–Cell and Cell–Microenvironment Interactions	358
15.2.2	Cancer Research	359
15.3	Laser-Assisted Bioprinting for Tissue-Engineering Applications	359
15.3.1	Skin	360
15.3.2	Blood Vessels	362
15.3.3	Heart	364
15.3.4	Bone	365
15.3.5	Nervous System	367
15.4	Conclusion	368
	References	369
16	Industrial, Large-Area, and High-Throughput LIFT/LIBT Digital Printing	375
	<i>Guido Hennig, Gerhard Hochstein, and Thomas Baldermann</i>	
16.1	Introduction	375
16.1.1	State of the Art in Digital Printing	376
16.1.2	History of Lasersonic® LIFT	376
16.2	Potential Markets and their Technical Demands on Lasersonic® LIFT	377
16.2.1	Digital Printing Market Expectations and Challenges	377
16.2.2	Demands on a LIFT/LIBT Printing Unit for Special Printing Markets	378
16.3	Lasersonic® LIFT/LIBT Printing Method	379
16.3.1	LIFT for Absorbing and LIBT for Transparent Inks	379
16.4	Optical Concept and Pulse Control of the Lasersonic® Printing Machine	382
16.4.1	Ultrafast Pulse Modulation at High Power Level	382
16.4.2	Time Schemes	383
16.4.3	Data Flow	385
16.4.4	Ultrafast Scan of the Laser Beam	385
16.5	The Four-Color Lasersonic® Printing Machine	387
16.5.1	Large-Area, High-Throughput LIFT/LIBT Inline R2R Printing System	387

16.5.2	Printing Heads for Absorptive (Black) and for Transparent (Colored) Inks	388
16.5.3	Inking Units	390
16.5.4	Synthetic Approaches to the Absorption Layer of the LIBT Donor Surface	392
16.6	Print Experiments and Results	392
16.7	Discussion of Effects	397
16.7.1	LIFT Process with Continuous-Wave Laser Source and Fast Modulation	397
16.7.2	Special Test Pattern to Study the Transfer Behavior at High Pixel Rate	399
16.8	Future Directions	401
16.9	Summary	402
	Acknowledgments	403
	References	403
17	LIFT of 3D Metal Structures	<i>405</i>
	<i>Ralph Pohl, Claas W. Visser, and Gert-willem Römer</i>	
17.1	Introduction	405
17.2	Basic Aspects of LIFT of Metals for 3D Structures	407
17.2.1	Ejection Regimes of Pure Metal Picosecond LIFT	408
17.2.1.1	Velocity of the Ejected Donor Material	409
17.2.1.2	Origin of Fragments in Cap-Ejection Regime	409
17.2.2	Droplet Impact and Solidification	411
17.3	Properties of LIFT-Printed Freestanding Metal Pillars	413
17.3.1	Reproducibility	414
17.3.2	Metallurgical Microstructure	416
17.3.3	Mechanical Properties	417
17.3.4	Electrical Properties	418
17.3.5	Inclined Pillars	420
17.4	Demonstrators and Potential Applications	420
17.5	Conclusions and Outlook	423
	References	423
18	Laser Transfer of Entire Structures and Functional Devices	<i>427</i>
	<i>Alberto Piqué, Nicholas A. Charipar, Raymond C. Y. Auyeung, Scott A. Mathews, and Heungsoo Kim</i>	
18.1	Introduction	427
18.2	Early Demonstrations of LIFT of Entire Structures	428
18.3	Process Dynamics	431
18.3.1	Lase-and-Place	432
18.4	Laser Transfer of Intact Structures	435
18.4.1	Laser Transfer of Metal Foils for Electrical Interconnects	436
18.5	Laser Transfer of Components for Embedded Electronics	437

- 18.6 Outlook 438
- 18.7 Summary 440
- Acknowledgments 441
- References 441

Index 445