

Contents

Preface XIII

Part One Materials Science and Raman Spectroscopy Background 1

- 1 The sp^2 Nanocarbons: Prototypes for Nanoscience and Nanotechnology 3
 - 1.1 Definition of sp^2 Nanocarbon Systems 3
 - 1.2 Short Survey from Discovery to Applications 5
 - 1.3 Why sp^2 Nanocarbons Are Prototypes for Nanoscience and Nanotechnology 10
 - 1.4 Raman Spectroscopy Applied to sp^2 Nanocarbons 11
- 2 Electrons in sp^2 Nanocarbons 17
 - 2.1 Basic Concepts: from the Electronic Levels in Atoms and Molecules to Solids 18
 - 2.1.1 The One-Electron System and the Schrödinger Equation 18
 - 2.1.2 The Schrödinger Equation for the Hydrogen Molecule 20
 - 2.1.3 Many-Electron Systems: the NO Molecule 21
 - 2.1.4 Hybridization: the Acetylene C_2H_2 Molecule 23
 - 2.1.5 Basic Concepts for the Electronic Structure of Crystals 24
 - 2.2 Electrons in Graphene: the Mother of sp^2 Nanocarbons 27
 - 2.2.1 Crystal Structure of Monolayer Graphene 27
 - 2.2.2 The π -Bands of Graphene 28
 - 2.2.3 The σ -Bands of Graphene 31
 - 2.2.4 N-Layer Graphene Systems 33
 - 2.2.5 Nanoribbon Structure 35
 - 2.3 Electrons in Single-Wall Carbon Nanotubes 37
 - 2.3.1 Nanotube Structure 38
 - 2.3.2 Zone-Folding of Energy Dispersion Relations 40
 - 2.3.3 Density of States 44
 - 2.3.4 Importance of the Electronic Structure and Excitation Laser Energy to the Raman Spectra of SWNTs 47
 - 2.4 Beyond the Simple Tight-Binding Approximation and Zone-Folding Procedure 48

Raman Spectroscopy in Graphene Related Systems. Ado Jorio, Riichiro Saito, Gene Dresselhaus, and Mildred S. Dresselhaus
 Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
 ISBN: 978-3-527-40811-5

3	Vibrations in sp^2 Nanocarbons	53
3.1	Basic Concepts: from the Vibrational Levels in Molecules to Solids	55
3.1.1	The Harmonic Oscillator	55
3.1.2	Normal Vibrational Modes from Molecules to a Periodic Lattice	56
3.1.3	The Force Constant Model	59
3.2	Phonons in Graphene	61
3.3	Phonons in Nanoribbons	65
3.4	Phonons in Single-Wall Carbon Nanotubes	66
3.4.1	The Zone-Folding Picture	66
3.4.2	Beyond the Zone-Folding Picture	67
3.5	Beyond the Force Constant Model and Zone-Folding Procedure	69
4	Raman Spectroscopy: from Graphite to sp^2 Nanocarbons	73
4.1	Light Absorption	73
4.2	Other Photophysical Phenomena	75
4.3	Raman Scattering Effect	78
4.3.1	Light–Matter Interaction and Polarizability: Classical Description of the Raman Effect	79
4.3.2	Characteristics of the Raman Effect	81
4.3.2.1	Stokes and Anti-Stokes Raman Processes	81
4.3.2.2	The Raman Spectrum	82
4.3.2.3	Raman Lineshape and Raman Spectral Linewidth Γ_q	82
4.3.2.4	Energy Units: cm^{-1}	84
4.3.2.5	Resonance Raman Scattering and Resonance Window Linewidth γ_r	85
4.3.2.6	Momentum Conservation and Backscattering Configuration of Light	86
4.3.2.7	First and Higher-Order Raman Processes	86
4.3.2.8	Coherence	87
4.4	General Overview of the sp^2 Carbon Raman Spectra	88
4.4.1	Graphite	88
4.4.2	Carbon Nanotubes – Historical Background	92
4.4.3	Graphene	96
5	Quantum Description of Raman Scattering	103
5.1	The Fermi Golden Rule	103
5.2	The Quantum Description of Raman Spectroscopy	108
5.3	Feynman Diagrams for Light Scattering	111
5.4	Interaction Hamiltonians	114
5.4.1	Electron–Radiation Interaction	114
5.4.2	Electron–Phonon Interaction	115
5.5	Absolute Raman Intensity and the E_{laser} Dependence	116
6	Symmetry Aspects and Selection Rules: Group Theory	121
6.1	The Basic Concepts of Group Theory	122
6.1.1	Definition of a Group	122
6.1.2	Representations	123
6.1.3	Irreducible and Reducible Representations	124

6.1.4	The Character Table	126
6.1.5	Products and Orthogonality	127
6.1.6	Other Basis Functions	128
6.1.7	Finding the IRs for Normal Modes Vibrations	128
6.1.8	Selection Rules	130
6.2	First-Order Raman Scattering Selection Rules	130
6.3	Symmetry Aspects of Graphene Systems	132
6.3.1	Group of the Wave Vector	132
6.3.2	Lattice Vibrations and π Electrons	135
6.3.3	Selection Rules for the Electron–Photon Interaction	138
6.3.4	Selection Rules for First-Order Raman Scattering	140
6.3.5	Electron Scattering by $q \neq 0$ Phonons	141
6.3.6	Notation Conversion from Space Group to Point Group Irreducible Representations	141
6.4	Symmetry Aspects of Carbon Nanotubes	142
6.4.1	Compound Operations and Tube Chirality	143
6.4.2	Symmetries for Carbon Nanotubes	145
6.4.3	Electrons in Carbon Nanotubes	151
6.4.4	Phonons in Carbon Nanotubes	151
6.4.5	Selection Rules for First-Order Raman Scattering	152
6.4.6	Insights into Selection Rules from Matrix Elements and Zone Folding	153

Part Two Detailed Analysis of Raman Spectroscopy in Graphene Related Systems 159

7	The G-band and Time-Independent Perturbations	161
7.1	G-band in Graphene: Double Degeneracy and Strain	162
7.1.1	Strain Dependence of the G-band	163
7.1.2	Application of Strain to Graphene	165
7.2	The G-band in Nanotubes: Curvature Effects on the Totally Symmetric Phonons	165
7.2.1	The Eigenvectors	166
7.2.2	Frequency Dependence on Tube Diameter	168
7.3	The Six G-band Phonons: Confinement Effect	169
7.3.1	Mode Symmetries and Selection Rules in Carbon Nanotubes	169
7.3.2	Experimental Observation Through Polarization Analysis	170
7.3.3	The Diameter Dependence of ω_G	172
7.4	Application of Strain to Nanotubes	174
7.5	Summary	175
8	The G-band and the Time-Dependent Perturbations	179
8.1	Adiabatic and Nonadiabatic Approximations	179
8.2	Use of Perturbation Theory for the Phonon Frequency Shift	181
8.2.1	The Effect of Temperature	181
8.2.2	The Phonon Frequency Renormalization	183

8.3	Experimental Evidence of the Kohn Anomaly on the G-band of Graphene	186
8.3.1	Effect of Gate Doping on the G-band of Single-Layer Graphene	186
8.3.2	Effect of Gate Doping on the G-band of Double-Layer Graphene	186
8.4	Effect of the Kohn Anomaly on the G-band of M-SWNTs vs. S-SWNTs	187
8.4.1	The Electron-Phonon Matrix Element: Peierls-Like Distortion	188
8.4.2	Effect of Gate Doping on the G-band of SWNTs: Theory	191
8.4.3	Comparison with Experiments	194
8.4.4	Chemical Doping of SWNTs	196
8.5	Summary	197
9	Resonance Raman Scattering: Experimental Observations of the Radial Breathing Mode	199
9.1	The Diameter and Chiral Angle Dependence of the RBM Frequency	200
9.1.1	Diameter Dependence: Elasticity Theory	200
9.1.2	Environmental Effects on the RBM Frequency	202
9.1.3	Frequency Shifts in Double-Wall Carbon Nanotubes	206
9.1.4	Linewidths	208
9.1.5	Beyond Elasticity Theory: Chiral Angle Dependence	209
9.2	Intensity and the Resonance Raman Effect: Isolated SWNTs	211
9.2.1	The Resonance Window	211
9.2.2	Stokes and Anti-Stokes Spectra with One Laser Line	214
9.2.3	Dependence on Light Polarization	215
9.3	Intensity and the Resonance Raman Effect: SWNT Bundles	216
9.3.1	The Spectral Fitting Procedure for an Ensemble of Large Diameter Tubes	217
9.3.2	The Experimental Kataura Plot	218
9.4	Summary	220
10	Theory of Excitons in Carbon Nanotubes	223
10.1	The Extended Tight-Binding Method: σ - π Hybridization	224
10.2	Overview on the Excitonic Effect	225
10.2.1	The Hydrogenic Exciton	226
10.2.2	The Exciton Wave Vector	227
10.2.3	The Exciton Spin	228
10.2.4	Localization of Wavefunctions in Real Space	229
10.2.5	Uniqueness of the Exciton in Graphite, SWNTs and C_{60}	230
10.3	Exciton Symmetry	231
10.3.1	The Symmetry of Excitons	231
10.3.2	Selection Rules for Optical Absorption	234
10.4	Exciton Calculations for Carbon Nanotubes	234
10.4.1	Bethe-Salpeter Equation	235
10.4.2	Exciton Energy Dispersion	236
10.4.3	Exciton Wavefunctions	237
10.4.4	Family Patterns in Exciton Photophysics	241
10.5	Exciton Size Effect: the Importance of Dielectric Screening	243

10.5.1	Coulomb Interaction by the $2s$ and σ Electrons	243
10.5.2	The Effect of the Environmental Dielectric Constant κ_{env} Term	245
10.5.3	Further Theoretical Considerations about Screening	246
10.6	Summary	248
11	Tight-Binding Method for Calculating Raman Spectra	251
11.1	General Considerations for Calculating Raman Spectra	252
11.2	The (n, m) Dependence of the RBM Intensity: Experiment	253
11.3	Simple Tight-Binding Calculation for the Electronic Structure	255
11.4	Extended Tight-Binding Calculation for Electronic Structures	258
11.5	Tight-Binding Calculation for Phonons	259
11.5.1	Bond Polarization Theory for the Raman Spectra	260
11.5.2	Non-Linear Fitting of Force Constant Sets	261
11.6	Calculation of the Electron-Photon Matrix Element	263
11.6.1	Electric Dipole Vector for Graphene	264
11.7	Calculation of the Electron-Phonon Interaction	266
11.8	Extension to Exciton States	269
11.8.1	Exciton-Photon Matrix Element	270
11.8.2	The Exciton-Phonon Interaction	271
11.9	Matrix Elements for the Resonance Raman Process	272
11.10	Calculating the Resonance Window Width	273
11.11	Summary	274
12	Dispersive G'-band and Higher-Order Processes: the Double Resonance Process	277
12.1	General Aspects of Higher-Order Raman Processes	278
12.2	The Double Resonance Process in Graphene	280
12.2.1	The Double Resonance Process	280
12.2.2	The Dependence of the $\omega_{\text{G}'}$ Frequency on the Excitation Laser Energy	284
12.2.3	The Dependence of the G'-band on the Number of Graphene Layers	286
12.2.4	Characterization of the Graphene Stacking Order by the G' Spectra	288
12.3	Generalizing the Double Resonance Process to Other Raman Modes	289
12.4	The Double Resonance Process in Carbon Nanotubes	290
12.4.1	The G'-band in SWNTs Bundles	292
12.4.2	The (n, m) Dependence of the G'-band	294
12.5	Summary	296
13	Disorder Effects in the Raman Spectra of sp^2 Carbons	299
13.1	Quantum Modeling of the Elastic Scattering Event	301
13.2	The Frequency of the Defect-Induced Peaks: the Double Resonance Process	304
13.3	Quantifying Disorder in Graphene and Nanographite from Raman Intensity Analysis	307
13.3.1	Zero-Dimensional Defects Induced by Ion Bombardment	308
13.3.2	The Local Activation Model	310

13.3.3	One-Dimensional Defects Represented by the Boundaries of Nanocrystallites	313
13.3.4	Absolute Raman Cross-Section	317
13.4	Defect-Induced Selection Rules: Dependence on Edge Atomic Structure	317
13.5	Specificities of Disorder in the Raman Spectra of Carbon Nanotubes	320
13.6	Local Effects Revealed by Near-Field Measurements	321
13.7	Summary	323
14	Summary of Raman Spectroscopy on sp^2 Nanocarbons	327
14.1	Mode Assignments, Electron, and Phonon Dispersions	327
14.2	The G-band	328
14.3	The Radial Breathing Mode (RBM)	330
14.4	G'-band	332
14.5	D-band	333
14.6	Perspectives	334
References		335
Index		351