Contents

Historical	foreword on	the centenary	after Felix Hau	sdorff's classi	c Set Theory —— x
ilistolitat	. IOIEWOIU OII	the centenary	aitei i etik ilau	Suvili S classi	L JEL I IIEUI V —— A

Preface — xv						
2	2 Fundamentals of the theory of functions —— 1					
	Introduction	Introduction —— 1				
	2.1 Descri	ptive and prescriptive spaces —— 2				
	2.1.1	Ensembles and their envelopes —— 2				
	2.1.2	The four transfinite collections of extensions of an ensemble —— 20				
	2.1.3	Classification of Borel sets for arbitrary and perfect				
		ensembles —— 31				
	2.1.4	Descriptive spaces with negligence —— 42				
	2.1.5	Prescriptive spaces —— 47				
	2.2 Famili	es of real-valued functions on a set —— 49				
	2.2.1	Real-valued functions and pointwise operations over them —— 49				
	2.2.2	The pointwise order between functions —— 52				
	2.2.3	The pointwise and uniform convergences of nets and sequences of functions —— 55				
	2.2.4	Some useful functional families — 59				
	2.2.5	Zero-sets and cozero-sets of functions —— 71				
	2.2.6	The equivalence of functions with respect to ideal ensembles — 74				
	2.2.7	Seminorms and norms of the uniform convergence on families and factor-families of functions —— 77				
	2.2.8	Pointwise continuous linear functionals on lattice-ordered linear spaces of functions —— 92				
	2.2.9	Truncatable lattice-ordered linear spaces of functions —— 98				
	2.3 Famili	es of measurable and distributable functions on a descriptive				
	space	 100				
	2.3.1	Measurable and distributable functions —— 100				
	2.3.2	Pointwise operations over measurable and distributable				
		functions —— 104				
	2.3.3	The pointwise order between measurable and distributable				
		functions —— 108				
	2.3.4	The pointwise and uniform convergences of sequences of				

measurable and distributable functions —— 109
2.3.5 Separability of sets by measurable and distributable

functions —— **116**

	2.3.6	envelopes. Naturalness of the family of measurable
		functions —— 119
	2.3.7	Correlations between Baire's and Borel's functional collections —— 124
	2.3.8	Families of semimeasurable functions on a space with an ensemble —— 134
2 4	Familio	s of uniform functions on a prescriptive space —— 140
		Uniform functions and their properties — 140
		Pointwise operations over uniform functions —— 142
		The uniform convergence of sequences of uniform functions —— 144
	2.4.4	Separability of sets by uniform functions — 146
	2.4.5	Symmetrizable functions on a space with an ensemble —— 150
	2.4.6	Descriptions of boundedly normal families and envelopes.
	2.4.0	Naturalness of the family of uniform functions —— 153
	2 / 7	Fine correlations between Baire's and Borel's functional
	2.4.7	collections — 158
2 5	Familie	s of functions on a descriptive space with negligence —— 162
د.,		Almost measurable, almost distributable, and almost uniform
	2.3.1	functions — 162
	2.5.2	Quasimeasurable, quasidistributable, and quasiuniform
	_,,,,	functions — 165
unc	lamenta	als of the measure theory —— 179
ntr	oductio	n —— 179
3.1	Spaces	with semimeasures and measures —— 180
	3.1.1	Spaces with evaluations, semimeasures and measures —— 180
	3.1.2	Families of evaluations, semimeasures, and measures on a
		descriptive space —— 185
	3.1.3	The total variation of a natural evaluation —— 187
	3.1.4	Some extensions of additive evaluations defined on semirings
		and rings —— 193
	3.1.5	Extension of a positive measure to a wide complete saturated measure —— 208
	216	Properties of the extended Borel – Lebesgue measure on \mathbb{R}^n —— 222
2 2		positions of semimeasures and measures — 226
3 ,2	3.2.1	The Hahn and Jordan decompositions of measures
	3.2.1	on a δ -ring — 226
	3 2 2	The Riesz decomposition of overfinite semimeasures and measures
	3.2.2	on a ring —— 231
	3.2.3	Norms on linear spaces of bounded semimeasures and
	3.2.3	moscures —— 230

	3.2.4	Absolute continuity and singularity and the Lebesgue
		decomposition — 240
3.3		besgue integral — 247
	3.3.1	Measurable functions on a space with a positive wide
		measure —— 247
	3.3.2	The Lebesgue integral over a space with a positive measure —— 255
	3.3.3	
	3.3.4	Properties of density and completeness for the family and the
		factor-family of integrable functions —— 266
	3.3.5	Comparison of some Lebesgue integrals over spaces with positive
		wide measures —— 273
	3.3.6	The Lebesgue integral over a space with an arbitrary wide measure.
		The problem of characterization of Lebesgue integrals as linear
		functionals —— 276
	3.3.7	Wide measures defined by densities —— 283
	3.3.8	The Lebesgue - Radon - Nikodym theorem 289
	3.3.9	Dual to the factor-space of integrable functions —— 296
3.4	Repres	sentation of a functional by the Lebesgue integral —— 300
	3.4.1	Regularity and continuity of evaluations. The key theorem for
		integral representations —— 300
	3.4.2	Representation of pointwise σ -continuous functionals by Lebesgue
		integrals. The solution of the problem of characterization of
		Lebesgue integrals as linear functionals —— 303
	3.4.3	Representation of pointwise continuous functionals by Lebesgue
		integrals —— 311
3.5	Topolo	gical spaces with measures. The Radon integral —— 316
	3.5.1	Topological spaces with evaluations, semimeasures, and
		measures —— 316
	3.5.2	Measurable and integrable functions on topological spaces with
		measures —— 323
	3.5.3	Wide Radon measures on Hausdorff spaces. The problem of
		characterization of Radon integrals as linear functionals —— 328
	3.5.4	Narrow Radon measures on Hausdorff spaces —— 334
	3.5.5	Radon bimeasures on Hausdorff spaces —— 339
	3.5.6	The Radon integral over a Hausdorff space with a Radon
		bimeasure —— 352
3.6	Repres	entation of a functional by the Radon integral —— 355
	3.6.1	σ -Exact linear functionals on spaces of symmetrizable
		functions —— 355
	3.6.2	Extensions of σ -exact functionals on spaces of symmetrizable
		functions by the Young – Daniell method —— 362

	3.6.3	Characterizations of Radon integrals with respect to positive Radon
		measures on a Hausdorff space as linear functionals —— 381
	3.6.4	The solution of the problem of characterization of Radon integrals as
		linear functionals —— 388
	3.7 The Ric	emann integral —— 394
	3.7.1	The Riemann integral over a topological space with a positive
		bounded Radon measure —— 394
	3.7.2	Description of the family of Riemann integrable functions on a
		Tychonoff space and its consequences — 396
	3.7.3	The Riemann integral for \mathbb{R}^n —— 405
D	Historical n	otes on the Riesz – Radon – Fréchet problem of characterization of
	Radon integ	grals as linear functionals —— 411
	D.1 The or	iginal Riesz representation theorem —— 411
	D.1.1	Functions of bounded variation —— 411
	D.1.2	The Riemann – Stiltjes integral —— 412
	D.1.3	The Hadamard – Fréchet problem —— 412
	D.1.4	The Riesz theorem —— 413
	D.1.5	Extension of positive functionals by Young's method —— 413
	D.1.6	The property of norm preserving —— 414
	D.1.7	Construction of the integral corresponding to a given
		functional —— 416
	D.2 Transit	tion from functions of bounded variation to bounded measures on
	compa	ict spaces —— 417
	D.3 Stage	of unbounded positive measures on locally compact spaces —— 418
	D.4 Stage	of bounded measures on non-compact spaces. Tight
	functio	onals —— 419
	D.5 Transi	tion to unbounded measures on arbitrary Hausdorff spaces —— 420
Inc	dex of terms	 421
Ind	dex of notati	ons —— 443
••••		
Bil	bliography –	 451
	- , ,	