Contents

Preface — v

Part I: Colloid and interface science in agrochemical formulations

1	Surfactants used in agrochemical formulations
	and their solution properties —— 3
1.1	General classification of surfactants — 3
1.2	Properties of solutions of surfactants —— 12
1.3	Solubility-temperature relationship for surfactants — 17
1.4	Thermodynamics of micellization —— 17
1.5	Micellization in surfactant mixtures (mixed micelles) —— 24
1.6	Surfactant-polymer interaction —— 26
2	Emulsion concentrates (EWs) —— 33
2.1	Introduction —— 33
2.2	Formation of emulsions —— 33
2.3	Mechanism of emulsification —— 35
2.4	Methods of emulsification —— 36
2.5	Role of surfactants in emulsion formation —— 37
2.6	Selection of emulsifiers —— 39
2.6.1	The hydrophilic-lipophilic balance (HLB) concept —— 39
2.6.2	The phase inversion temperature (PIT) concept —— 41
2.6.3	The cohesive energy (CER) concept for emulsifier selection —— 43
2.6.4	The critical packing parameter (CPP) for emulsifier selection —— 45
2.7	Emulsion stability —— 46
2.7.1	Creaming or sedimentation of emulsions —— 47
2.7.2	Flocculation of emulsions —— 51
2.7.3	Ostwald ripening —— 52
2.7.4	Coalescence of emulsions —— 54
2.7.5	Phase inversion —— 56
2.8	Experimental methods for assessing emulsion stability —— 57
3	Suspension concentrates (SCs) —— 61
3.1	Introduction —— 61
3.2	Preparation of suspension concentrates and the role
	of surfactants/dispersing agents —— 62
3.3	Effect of surfactant adsorption —— 66
3.4	Control of the physical stability of suspension concentrates — 67

viii	Contents

3.5	Ostwald ripening (crystal growth) —— 73
3.6	Stability against claying or caking —— 74
3.7	Characterization of suspension concentrates and assessment of their long-term physical stability —— 82
4	Suspoemulsions —— 99
4.1	Introduction —— 99
4.2	Systems investigated for studying interactions —— 100
4.3	Creaming/sedimentation of suspoemulsions —— 101
4.4	Reduction of suspension/emulsion interaction and prevention of instability —— 103
4.5	Summary of the criteria for preparing a stable suspoemulsion —— 104
4.6	Preparation of suspoemulsion by emulsification of the oil into the suspension —— 105
4.7	Prevention of crystallization —— 105
4.8	Model suspoemulsion of polystyrene latex and isoparaffinic oil stabilized with Pluronic PE (PEO-PPO-PEO A-B-A block copolymer) —— 106
4.9	Model systems of polystyrene latex with grafted PEO chains and hexadecane emulsions —— 108
4.10	Conclusions —— 111
5	Oil-based suspension concentrates —— 113
5.1	Introduction —— 113
5.2	Stability of suspensions in polar media —— 113
5.3	Stability of suspensions in nonpolar media —— 116
5.4	Settling of suspensions and prevention of formation
	of dilatant sediments —— 120
5.5	Emulsification of oil-based suspensions —— 124
5.6	Polymeric surfactants for oil-based suspensions and the choice of emulsifiers —— 127
5.7	Emulsification into aqueous electrolyte solutions —— 128
5.8	Proper choice of the antisettling system —— 128
5.9	Rheological characteristics of the oil-based suspensions —— 129
6	Microemulsions in agrochemicals —— 131
6.1	Introduction —— 131
6.2	Application in agrochemicals —— 133
6.3	Basic principles of microemulsion formation
	and thermodynamic stability —— 134
6.3.1	Mixed film theories —— 134
6.3.2	Solubilization theories —— 135

6.3.3	Thermodynamic theory of microemulsion formation and stability —— 138
6.3.4	Factors determining W/O versus O/W microemulsions —— 139
6.4	Characterization of microemulsions using scattering techniques —— 140
6.5	Characterization of microemulsions using conductivity —— 145
6.6	NMR Measurements —— 146
6.7	Selection of surfactants for formulation of microemulsions —— 147
6.8	Role of microemulsions in enhancing biological efficacy —— 148
7	Controlled-release formulations —— 153
7.1	Introduction —— 153
7.2	Types of controlled-release systems —— 153
7.3	Mechanism of controlled release from microparticles —— 159
8	Interfacial aspects of agrochemical spray formulations —— 163
8.1	Introduction —— 163
8.2	Interactions at the air/solution interface and their effect
	on droplet formation —— 167
8.3	Spray impaction and adhesion —— 171
8.4	Droplet sliding and spray retention —— 174
8.5	Wetting and spreading —— 177
8.6	Evaporation of spray drops and deposit formation —— 182
8.7	Solubilization and its effect on transport —— 183
8.8	Interaction between surfactant, agrochemical
	and target species —— 187
Part	II: Colloid and interface science in paints and coatings
9	General introduction —— 191
10	Emulsion, dispersion and suspension polymerization preparation of polymer colloids and their stabilization —— 199
10.1	Introduction —— 199
10.2	Emulsion polymerization —— 199
10.3	Polymeric surfactants for stabilizing preformed
	latex dispersions —— 209
10.4	Dispersion polymerization —— 214
11	Pigment dispersion and the role of surfactants in wetting —— 221
11.1	Introduction —— 221
11.2	Powder wetting —— 222

11.3	Critical surface tension of wetting —— 227
11.4	Effect of surfactant adsorption —— 228
11.5	Wetting of powders by liquids —— 230
11.6	Wetting agents for hydrophobic pigments —— 233
11.7	Dynamics of processing of adsorption and wetting —— 235
12	Breaking of aggregates and agglomerates (deagglomeration)
	and size reduction —— 245
12.1	Dispersion of aggregates and agglomerates into single particles —— 245
12.2	Classification of dispersants —— 246
12.2.1	Surfactants — 246
12.2.2	Polymeric surfactants —— 246
12.2.3	Polyelectrolytes — 248
12.3	Assessment and selection of dispersants —— 249
12.3.1	Adsorption isotherms —— 249
12.3.2	Measurement of dispersion and particle size distribution —— 250
12.4	Wet milling (comminution) —— 255
13	Phoology of point formulations 250
13 13.1	Rheology of paint formulations —— 259 Introduction —— 259
13.2	
13.2.1	Experimental techniques for studying paint rheology —— 262 Experimental methods for quality control —— 262
13.2.1	Rheological techniques for research and development
13.2.2	of a paint system —— 264
13.3	Application of rheological techniques to paint formulations —— 277
	Dispersion and ingredients — 278
13.4 13.5	Grinding and mixing —— 280
13.6	Application of rheology for paint evaluation —— 282
13.7	Flow in pipes —— 283 Examples of the flow properties of some sommercial points —— 285
13.8	Examples of the flow properties of some commercial paints —— 285
Part II	I: Colloid and interface science in food colloids
14	Interaction between food-grade surfactants and water —— 291
14. 1	Introduction —— 291
14.2	Interaction between food-grade surfactants and water —— 292
14.2.1	Liquid crystalline structures —— 292
14.2.2	Binary phase diagrams —— 294
14.2.3	Ternary phase diagrams —— 298
14.3	Monolayer formation —— 299
14.4	Liquid crystalline phases and emulsion stability —— 303

15	Proteins as emulsifiers and their interaction with polysaccharides —— 305
15.1	Protein structure —— 305
15.2	Interfacial properties of proteins at the liquid/liquid interface —— 307
15.3	Proteins as emulsifiers —— 308
15.4	Protein-polysaccharide interactions in food colloids —— 308
15.5	Polysaccharide-surfactant interactions —— 310
16	Surfactant association structures, microemulsions
	and emulsions in food —— 313
17	Rheology of food emulsions —— 319
17.1	Interfacial rheology —— 319
17.2	Correlation of emulsion stability with interfacial rheology —— 321
17.2.1	Mixed surfactant films —— 321
17.2.2	Protein films —— 322
17.3	Bulk rheology of emulsions —— 323
17.4	Formation of networks —— 325
17.5	Rheology of microgel dispersions —— 327
17.6	Fractal nature of the aggregated network —— 327
18	Food rheology and mouth feel —— 329
18.1	Introduction —— 329
18.2	Rheological measurements —— 329
18.3	Mouth feel of foods – the role of rheology —— 332
18.3.1	Break-up of Newtonian liquids —— 334
18.3.2	Break-up of non-Newtonian liquids —— 335
18.4	Complexity of flow in the oral cavity —— 335
18.5	Rheology-texture relationship —— 336
18.6	Practical applications of food colloids —— 339

Index — 343