## **Contents**

| 1<br>1.1<br>1.2<br>1.3 | Introduction — 1 Observational Background — 2 Theoretical Background — 5 Organization of the Material — 12  Dynamical Drivers of Galaxy Evolution — 14 |                                                                               |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 2                      |                                                                                                                                                        |                                                                               |
| 2.1                    | Motivation and Outline for the Theoretical Approach —— 14                                                                                              |                                                                               |
| 2.2                    |                                                                                                                                                        | ty Wave Crest as the Site of Gravitational Instability —— <b>18</b>           |
|                        | 2.2.1                                                                                                                                                  | Local Stability Condition at the Spiral Arm and Interarm Region —— 19         |
|                        | 2.2.2                                                                                                                                                  | Length Scale of Spiral Instability at the Solar<br>Neighborhood —— 22         |
| 2.3                    | Poten                                                                                                                                                  | tial-Density Phase Shifts for Density Wave Modes —— 24                        |
|                        | 2.3.1                                                                                                                                                  | ·                                                                             |
|                        | 2.3.2                                                                                                                                                  | A Phase Shift Given by the Poisson Integral —— 27                             |
|                        | 2.3.3                                                                                                                                                  | Phase Shifts in the Eulerian Equations of Motion                              |
|                        |                                                                                                                                                        | and in the Linear Periodic Orbit Solution — 29                                |
|                        | 2.3.4                                                                                                                                                  | Phase Shift in the Linear and Nonlinear Regimes                               |
|                        |                                                                                                                                                        | of the Eulerian Solutions —— 32                                               |
| 2.4                    | Linear                                                                                                                                                 | Regime and Quasi-Steady State of the Wave Modes 3                             |
|                        | 2.4.1                                                                                                                                                  | The Process of Reaching the Quasi-Steady                                      |
|                        |                                                                                                                                                        | State —— <b>35</b>                                                            |
|                        | 2.4.2                                                                                                                                                  | Reconciliation of the Two-Wave Superposition                                  |
|                        |                                                                                                                                                        | and the Unstable-Mode Points of View —— 40                                    |
| 2.5                    | Torqu                                                                                                                                                  | e Coupling and Angular Momentum Transport —— 46                               |
|                        | 2.5.1                                                                                                                                                  | Torque Couplings due to Density Waves —— 46                                   |
|                        | 2.5.2                                                                                                                                                  | The Relation Between the Torque Couplings and the                             |
|                        |                                                                                                                                                        | Rate of Angular Momentum Change in the Disk —— 48                             |
|                        | 2.5.3                                                                                                                                                  | The Relation Between the Volume-Torque Integral $\overline{\mathscr{T}}$      |
|                        |                                                                                                                                                        | and the Torque-Coupling Integrals $C_{\mathrm{g}}$ and $C_{\mathrm{a}}$ —— 51 |
|                        | 2.5.4                                                                                                                                                  | A Closure Relation for the Quasi-Steady State —— 53                           |
| 2.6                    | Rates                                                                                                                                                  | of Secular Evolution —— <b>56</b>                                             |
|                        | 2.6. <b>1</b>                                                                                                                                          |                                                                               |
|                        |                                                                                                                                                        | Radius —— <b>57</b>                                                           |
|                        |                                                                                                                                                        | Secular Heating of the Galactic Disk —— <b>59</b>                             |
|                        |                                                                                                                                                        | Secular Mass Flow Rate Determination —— <b>60</b>                             |
|                        |                                                                                                                                                        | Secular Change of Disk Surface Density —— 62                                  |
|                        |                                                                                                                                                        | Viscous Accretion Disk Analogy —— 65                                          |
| 2.7                    | Relation to "Broadening of Resonances" —— 67                                                                                                           |                                                                               |
| 2.8                    | In a N                                                                                                                                                 | utshell <b> 69</b>                                                            |



| 3   | N-Body Simulations of Galaxy Evolution —— 70          |  |  |
|-----|-------------------------------------------------------|--|--|
| 3.1 | Overview of N-Body Simulations of Disk Galaxies —— 70 |  |  |
| 3.2 | Simulation Codes and Basic State Specifications ——71  |  |  |

ions —— **71** 3.2.1 Choice of Basic State Parameters —

3.2.2 Choice of Simulation Parameters (First-Generation Tests) --- 74

3.3 Signature of Collisionless Shock in N-Body Spirals — 77 3.4 Modal Nature of a Spontaneously Formed Pattern —— 85

Qualitative Signature of Secular Mass Redistribution — 90 3.5 3.6 Longevity of the Spiral Modes — 93 3.6.1 Faithfulness of the N-Body Simulations — 93 3.6.2 Three Test Runs Using Different Numbers of Particles --- 95

3.6.3 Lifetime of a Spiral Pattern Inferred from N-Body Simulations --- 98 Role of Gas --- 99

Implication on Orbits as "Building Blocks" — 103 3.8 3.9 Second-Generation Tests —— 109

3.7

3.9.1 The Critical Roles of the Softening Parameter — 110 3.9.2 The Impact of Softening on N-Body Simulated Mass Flow Rates —— 111

3.9.3 Four Runs with Differing Softening Parameters —— 114 3.9.4 Grid Noise Associated with the Use of Small Particle

Softening Parameter — 137 3.9.5 Accuracy and Implications of the Secular Radial Mass Flow Rates Obtained in N-Body Simulations — 143

Astrophysical Implications of the Dynamical Theory —— 146

4 Motivations and General Outline - 146 4.1 PDPS Method for CR Determination —— 149 4.2

4.2.1 Dynamical Basis and Practical Considerations for the PDPS Method —— 149 4.2.2 First Application of the Method: NGC 1530 —— 153

4.2.3 Phase Shift in a Pure Spiral Galaxy: NGC 5247 —— 157 4.2.4 Multiple Nested Resonances: NGC 4321 — 158

4.2.5 Phase Shift in an Interacting Galaxy: M51 —— 161 4.2.6 Regarding the So-Called "Super-Fast Bars" — 162 4.2.7 Physical Basis Underlying the Validity and Accuracy

of the Phase Shift Method - 164 4.2.8 Implications for the Kinematics and Dynamics of Nearby Galaxies — 167

- 4.3 Secular Mass Migration and Bulge Building — 169 4.3.1 Formation and Evolution of Galactic Bulges — 170 4.3.2 Secular Mass Flow Rate Determination Using NIR and MIR Images —— 172 4.3.3 Relative Contributions from Gravitational and Advective Torques --- 179 4.3.4 Relative Contributions of Stellar and Gaseous Mass Flows --- 181 Secular Heating and the Age-Velocity-Dispersion Relation —— 187 4.4 The Age-Velocity Dispersion Relation of the Solar Neighborhood Stars --- 188 4.4.2 The Cause of Isotropic Velocity Diffusion in Three Dimensions and the Preservation of the Gaussian Velocity Distribution through Time --- 191 4.4.3 The Origin of Radial Variation of the Stellar Velocity Dispersion with Galactocentric Distance — 191 Secular Heating and the Size-Line-Width Relation — 193 4.5 4.5.1 History and Motivation — 193 4.5.2 Energy Injection into the Star-Gas Two-Fluid through the Spiral Collisionless Shock — 195 4.5.3 The Rate of Energy Injection and Rate of Energy Cascade —— 196
- Complex 197
  4.6 Other Characteristics of the Milky Way Galaxy and External Galaxies 202

4.6.1 Mass Distribution of the Different Galactic Components — 203

- 4.6.2 Stellar Population and Kinematics in the Thin and Thick Disks —— 204
- 4.7 Universal Rotation Curve 205
  4.8 Formation and Maintenance of Galaxy Scaling Relations 209

4.5.4 Application: The Carina Molecular Cloud

- 4.8.1 General Considerations 209
  4.8.2 Origin and Evolution of the Scaling Relations 210
- 4.9 Butcher–Oemler Effect and Evolution of Cluster Galaxies 214
  4.9.1 Observations and Candidate Mechanisms
  - of the Morphological BO Effect —— 214
  - 4.9.2 An Infrared Diagnostic Approach for the Star-Formation States of Cluster Galaxies 217
  - 4.9.3 Application of the Infrared Diagnostic Approach —— 224
  - 4.9.4 Other Cluster Observations in Support of Secular Evolution —— 228

|      | 4.9.5 Further Comments on the Different Proposed                    |  |  |
|------|---------------------------------------------------------------------|--|--|
|      | Mechanisms for Cluster Galaxy Evolution —— 229                      |  |  |
| 4.10 | Secular Evolution and the Origin of Color-Magnitude Relation —— 233 |  |  |
| 4.11 | An Example of Secular Evolution in Interacting Galaxies —— 234      |  |  |
|      | 4.11.1 Background —— 235                                            |  |  |
|      | 4.11.2 Previous Observations and Simulations of the Leo             |  |  |
|      | Triplet 237                                                         |  |  |
|      | 4.11.3 CO 1-0 and HI Aperture Synthesis Observations of             |  |  |
|      | NGC 3627 —— <b>237</b>                                              |  |  |
|      | 4.11.4 Analysis and Discussion —— 239                               |  |  |
| 4.12 | Black Hole Mass and Bulge Mass Correlation —— 243                   |  |  |
| 5    | Putting It All Together —— 246                                      |  |  |
| 5.1  | Reexamine the Foundations —— 246                                    |  |  |
|      | 5.1.1 On the Modal and Quasi-Steady State Hypotheses                |  |  |
|      | of Density Waves in Physical and Simulated Disk                     |  |  |
|      | Galaxies —— 246                                                     |  |  |
|      | 5.1.2 Role of Basic State Specification — 260                       |  |  |
| 5.2  | Broader Implications —— 266                                         |  |  |
|      | 5.2.1 Self-Organization in Nonequilibrium Systems                   |  |  |
|      | and the Formation of Singularity Hierarchy —— 266                   |  |  |
|      | 5.2.2 Implications on the Cosmological Evolution of                 |  |  |
|      | Galaxies —— 269                                                     |  |  |
| 6    | Concluding Remarks —— 284                                           |  |  |
| 7    | Appendix: Relation to Kinetics and Fluid Mechanics —— 287           |  |  |
| 7.1  | Foundation of Kinetic Theory: The Boltzmann Equation —— 287         |  |  |
|      | 7.1.1 Outline of the Derivation of the Boltzmann Equation           |  |  |
|      | Through the BBGKY Hierarchy —— 287                                  |  |  |
|      | 7.1.2 Growth of Instability and the Arrow of Time —— 292            |  |  |
| 7.2  | From Kinetic Theory to Fluid Mechanics —— 294                       |  |  |
| 7.3  | Nonequilibrium Phase Transition and Galaxy Evolution —— 296         |  |  |
| 7.4  | The Proper Choice of Analytical Hierarchies —— 297                  |  |  |
|      |                                                                     |  |  |

References — 299 Index — 313