Contents

Preface ---- v

1	Dynamic fuzzy machine learning model —— 1
1.1	Problem statement —— 1
1.2	DFML model —— 1
1.2.1	Basic concept of DFMLs —— 2
1.2.2	DFML algorithm —— 4
1.2.3	DFML geometric model description —— 13
1.2.4	Simulation examples —— 14
1.3	Relative algorithm of DFMLS —— 16
1.3.1	Parameter learning algorithm for DFMLS —— 16
1.3.2	Maximum likelihood estimation algorithm in DFMLS —— 21
1.4	Process control model of DFMLS —— 29
1.4.1	Process control model of DFMLS —— 29
1.4.2	Stability analysis —— 30
1.4.3	Design of dynamic fuzzy learning controller —— 34
1.4.4	Simulation examples —— 36
1.5	Dynamic fuzzy relational learning algorithm —— 39
1.5.1	An outline of relational learning — 40
1.5.2	Problem introduction —— 43
1.5.3	DFRL algorithm 44
1.5.4	Algorithm analysis —— 47
1.6	Summary —— 48
Referen	ces —— 48
2	Dynamic fuzzy autonomic learning subspace algorithm —— 51
2.1	Research status of autonomic learning —— 51
2.2	Theoretical system of autonomous learning subspace based or
	DFL 54
2.2.1	Characteristics of AL —— 54
2.2.2	Axiom system of AL subspace —— 56
2.3	Algorithm of ALSS based on DFL —— 57
2.3.1	Preparation of algorithm —— 58
2.3.2	Algorithm of ALSS based on DFL —— 60
2.3.3	Case analysis —— 63
2.4	Summary —— 66
Pafaran	ros —— 66

3	Dynamic fuzzy decision tree learning —— 69
3.1	Research status of decision trees —— 69
3.1.1	Overseas research status —— 69
3.1.2	Domestic research status — 70
3.2	Decision tree methods for a dynamic fuzzy lattice — 72
3.2.1	ID3 algorithm and examples —— 72
3.2.2	Characteristics of dynamic fuzzy analysis of decision trees —— 74
3.2.3	Representation methods for dynamic fuzzy problems
	in decision trees —— 74
3.2.4	DFDT classification attribute selection algorithm —— 77
3.2.5	Dynamic fuzzy binary decision tree —— 82
3.3	DFDT special attribute processing technique —— 86
3.3.1	Classification of attributes — 87
3.3.2	Process used for enumerated attributes by DFDT —— 87
3.3.3	Process used for numeric attributes by DFDT —— 88
3.3.4	Methods to process missing value attributes in DFDT —— 94
3.4	Pruning strategy of DFDT —— 98
3.4.1	Reasons for pruning —— 98
3.4.2	Methods of pruning —— 100
3.4.3	DFDT pruning strategy —— 101
3.5	Application —— 104
3.5.1	Comparison of algorithm execution —— 104
3.5.2	Comparison of training accuracy —— 105
3.5.3	Comprehensibility comparisons —— 109
3.6	Summary —— 110
Referen	ces —— 110
4	Concept learning based on dynamic fuzzy sets —— 115
4.1	Relationship between dynamic fuzzy sets and concept learning —— 115
4.2	Representation model of dynamic fuzzy concepts —— 115
4.3	DF concept learning space model —— 117
4.3.1	Order model of DF concept learning —— 117
4.3.2	DF concept learning calculation model —— 120
4.3.3	Dimensionality reduction model of DF instances —— 125
4.3.4	Dimensionality reduction model of DF attribute space —— 126
4.4	Concept learning model based on DF lattice —— 129
4.4.1	Construction of classical concept lattice —— 129
4.4.2	Constructing lattice algorithm based on DFS —— 132
4.4.3	DF Concept Lattice Reduction —— 135
4.4.4	Extraction of DF concept rules —— 137
4.4.5	Examples of algorithms and experimental analysis —— 139
4.5	Concept learning model based on DFDT —— 142

4.5.1	DF concept tree and generating strategy —— 142
4.5.2	Generation of DF Concepts —— 143
4.5.3	DF concept rule extraction and matching algorithm —— 151
4.6	Application examples and analysis —— 152
4.6.1	Face recognition experiment based on DF concept lattice —— 152
4.6.2	Data classification experiments on UCI datasets —— 156
4.7	Summary —— 159
Referen	ces —— 159
5	Semi-supervised multi-task learning based on dynamic fuzzy sets —— 161
5.1	Introduction —— 161
5.1.1	Review of semi-supervised multi-task learning —— 161
5.1.2	Problem statement —— 166
5.2	Semi-supervised multi-task learning model —— 167
5.2.1	Semi-supervised learning —— 167
5.2.2	Multi-task learning — 172
5.3	Semi-supervised multi-task learning model based on DFS —— 178
5.3.1	Dynamic fuzzy machine learning model —— 179
5.3.2	Dynamic fuzzy semi-supervised learning model —— 180
5.3.3	DFSSMTL model —— 180
5.4	Dynamic fuzzy semi-supervised multi-task matching algorithm —— 182
5.4.1	Dynamic fuzzy random probability —— 183
5.4.2	Dynamic fuzzy semi-supervised multi-task matching algorithm —— 184
5.4.3	Case analysis — 189
5.5	DFSSMTAL algorithm —— 192
5.5.1	Mahalanobis distance metric —— 192
5.5.2	Dynamic fuzzy K-nearest neighbour algorithm —— 193
5.5.3	Dynamic fuzzy semi-supervised adaptive learning algorithm —— 196
5.6	Summary — 205
	nces — 206
Kelelel	200
6	Dynamic fuzzy hierarchical relationships —— 209
6.1	Introduction —— 209
6.1.1	Research progress of relationship learning —— 209
6.1.2	Questions proposed —— 214
6.1.3	Chapter structure —— 215
6.2	Inductive logic programming —— 215
6.3	Dynamic fuzzy HRL —— 217
6.3.1	DFL relation learning algorithm (DFLR) —— 217
6.3.2	Sample analysis —— 222
6.3.3	Dynamic fuzzy matrix HRL algorithm —— 226
6.3.4	Sample analysis —— 232

6.4	Dynamic fuzzy tree hierarchical relation learning —— 235
6.4.1	Dynamic fuzzy tree —— 235
6.4.2	Dynamic fuzzy tree hierarchy relationship learning algorithm —— 238
6.4.3	Sample analysis —— 246
6.5	Dynamic fuzzy graph hierarchical relationship learning —— 249
6.5.1	Basic concept of dynamic fuzzy graph —— 249
6.5.2	Dynamic fuzzy graph hierarchical relationship learning
	algorithm 253
6.5.3	Sample analysis —— 255
6.6	Sample application and analysis —— 255
6.6.1	Question description —— 256
6.6.2	Sample analysis —— 260
6.7	Summary —— 262
Referen	ces — 262
7	Multi-agent learning model based on dynamic fuzzy logic —— 267
7.1	Introduction —— 267
7.1.1	Strategic classification of the agent learning method —— 267
7.1.2	Characteristics of agent learning —— 267
7.1.3	Related work —— 268
7.2	Agent mental model based on DFL —— 269
7.2.1	Model structure —— 269
7.2.2	Related axioms —— 274
7.2.3	Working mechanism —— 275
7.3	Single-agent learning algorithm based on DFL —— 277
7.3.1	Learning task —— 277
7.3.2	Immediate return single-agent learning algorithm based on DFL —— 277
7.3.3	Q-learning function based on DFL —— 279
7.3.4	Q-learning algorithm based on DFL —— 280
7.4	Multi-agent learning algorithm based on DFL —— 282
7.4.1	Multi-agent learning model based on DFL —— 282
7.4.2	Cooperative multi-agent learning algorithm based on DFL —— 282
7.4.3	Competitive multi-agent learning algorithm based on DFL —— 298
7.5	Summary —— 299
Reference	ces —— 299
8	Appendix —— 301
8.1	Dynamic fuzzy sets —— 301
8.1.1	Definition of dynamic fuzzy sets —— 301
8.1.2	Operation of dynamic fuzzy sets — 301
8.1.3	Cut set of dynamic fuzzy sets — 304
8.1.4	Dynamic fuzzy sets decomposition theorem —— 305
	,

8.2	Dynamic fuzzy relations —— 308
8.2.1	The conception dynamic fuzzy relations —— 308
8.2.2	Property of dynamic fuzzy relations — 309
8.2.3	Dynamic fuzzy matrix —— 310
8.3	Dynamic fuzzy logic —— 312
8.3.1	Dynamic fuzzy Boolean variable —— 312
8.3.2	DF proposition logic formation —— 313
8.4	Dynamic fuzzy lattice and its property — 316

Index ---- 321