Outline

4. Introduction	1
 Silicon, its higher Homologues Germanium and Tin, and their Role in Materials Science 	3
1.1 Silicon	3
1.2 Germanium and Tin	5
2. Zintl Phases and Zintl Clusters of Tetrel Elements	7
2.1 The Zintl-Klemm Concept and Zintl-Phases	7
2.2 $[E_4]^{4-}$ and $[E_9]^{4-}$ Zintl Clusters	8
3. Motivation, Scope and Outline	13
3.1 Motivation and Scope	13
3.2 Outline	14
4. References	17
B. Programs and Methods	21
1. Used Programs	23
1.1 Structure Modelling	23
1.2 Periodic Systems and Low-Dimensional Neutral Compounds	23
1.2.1 Structure Optimization and Frequency Calculations	23
1.2.2 One Electron Properties	23
1.2.3 Topological and Symmetry Investigations	23
1.3 Charged Clusters and Molecules	24
1.4 Visualization	24
1.5 Data Ordering and Plotting	24

XVII

2. Methods	25
2.1 Element Modifications and other Periodic Systems	25
2.1.1 Functional and Basis Set	25
2.1.2 Structure Optimization	25
2.1.3 Choice of k-point Sampling	26
2.1.4 Numerical Accuracy and Computational Parameters	26
2.1.5 Special Treatment of Possibly Conducting Systems	27
2.1.6 Character of the Stationary Point on the Potential Energy Surface	27
2.1.7 Property Calculations	27
2.1.8 Structure Identification	28
2.2 Charged Molecular Clusters	28
2.2.1 Functional and Basis Set	28
2.2.2 Single Point Calculations	28
2.2.3 Structure Optimizations	29
2.2.4 Numerical Accuracy and Computational Parameters	29
2.2.5 Charge Compensation	29
2.2.6 Character of the Stationary Point on the Potential Energy Surface	29
2.2.7 Property Calculations	29
3. References	31

C. Results and Discussion	33
1. From Zintl-Phases to Novel Tetrel Allotropes	35
1.1 sp ³ -Silicon Allotropes modelled from Anionic Partial Structures of Zintl Phases	35
1.1.1 Relevant Literature on sp ³ -Si Allotropes and Zintl Phases	35
1.1.2 Novel Si Allotropes derived from Li ₃ NaSi ₆ and virtual "Li ₇ Si ₁₂ "	38
1.1.3 Systematic Stacking of Modified Layers of α-Si	40
1.2 Linking of <i>nido</i> -[Si ₉] ⁴⁻ Clusters to Novel Low- Dimensional Materials	47
1.2.1 Relevant Literature on Low-Dimensional Si Modifications	47
1.2.2 Low-Dimensional Networks with and without sp³-Si Linkers	49
1.3 Conclusion	55
2. Zintl Cluster Compounds and Discrete Intermetalloids in Solution	59
2.1 $[E_4]^{4-}$ and $[E_9]^{4-}$ $(E = Si, Ge, Sn)$ Zintl-Clusters	59
2.1.1 Relevant Literature on $[E_4]^{4-}$ and $[E_9]^{4-}$ Zintl Clusters	59
2.1.2 The $nido$ -[Ge ₉] ⁴⁻ and $nido$ -[Si ₉] ⁴⁻ Clusters	60
2.1.3 Substitution of Si to mixed $nido$ -[Si _{9-x} Ge _x] ⁴⁻ (x = 1, 2) Clusters	62
2.2 Ge ₉ Clusters Functionalized with (Silicon) Organic Ligands	64
2.2.1 Relevant Literature on Functionalized Ge ₉ Clusters	64
2.2.2 Extension of an Organic π-System in [H ₂ C=CH-Ge ₉ -CH=CH-CH=CH-Ge ₉ -H ₂ C=CH] ⁴⁻	64
2.2.3 Ge ₉ Clusters Functionalized with Silicon-Organyls – [Ge ₉ {Si(SiMe ₃) ₃ } ⁻ and [Ge ₉ (SiH ₃) ₃] ⁻	66

2.3 Extensions of <i>Nona</i> -Clusters with Metal Atoms	65
2.3.1 Relevant Literature on Metal-Extended [E ₉] ⁴⁻ Clusters	69
2.3.2 [Ge ₉] ⁴⁻ Clusters Coordinated to Zn in a η^4 -Fashion	70
2.3.3 [Ge ₉ Zn] ²⁻ versus [Ge ₉ Sn] ²⁻	75
2.4 The Endohedral Clusters [Co@Sn ₉] ⁵⁻ and [Co ₂ @Sn ₁₇] ⁵⁻	77
2.4.1 Relevant Literature on Endohedrals	77
2.4.2 [Co@Sn ₉] ⁵⁻ and [Co ₂ @Sn ₁₇] ⁵⁻	78
2.5 $[Ge_4]^{4-}/[Ge_xSi_{4-x}]^{4-}$ Units Bridged with Zn or Stabilized by Cu Organyls	80
2.5.1 Relevant Literature on $[E_4]^{4-}$ Clusters	80
2.5.2 $[(MesCu)_2(\eta^3, \eta^3-Ge_4)]^{4-}$ – A Ge ₄ Unit in Solution	80
2.5.3 $[(\eta^2-(Si/Ge)_4)Zn(\eta^2-(Si/Ge)_4)]^6-$ Mixed Si/Ge Tetrahedra Bridged by Zn	80
2.6 Conclusion	82
3. Investigations on polyphosphides	87
3.1 Relevant Literature on Polyphosphides	87
3.2 The phosphorous-rich polyphosphides LiP ₁₅ and NaP ₇	88
3.3 Conclusion	89
4. References	91
D. Summary and Outlook	97
1. Novel Tetrel Allotropes	99
2. Zintl Clusters in Solution	105
3. P-rich Polyphosphides	107
4. References	109

E.	Publications and Manuscripts	111
	1. Alkali Metals Extraction Reactions with the Silicides Li ₁₅ Si ₄ and Li ₃ NaSi ₆ : Amorphous Si <i>versus allo-</i> Si	113
	2. Slicing Diamond – A Guide to Deriving sp³-Si Allotropes	125
	3. Slicing Diamond for more sp³-tetrel allotropes and group 14 frameworks reaching from direct to zero band gaps	143
	4. Chemi-inspired silicon structures – from Si ₉ cages to 1D polymers, 2D sheets, single-walled nanotubes, and nano-particles	165
	5. Mixing properties – polysilanes interspersed by Si ₉ cages	189
	6. Structural characteristics of mixed $nido$ -[Si _{9-x} Ge _x] ⁴⁻ ($x = 1,2$) Zintl clusters in solution and within solvent crystals	201
	7. Retention of the Zn–Zn bond in [Ge ₉ Zn–ZnGe ₉] ^{6–} and Formation of [(Ge ₉ Zn)–(Ge ₉)–(ZnGe ₉)] ^{8–} and Polymeric 1 _{∞} {–(Ge ₉ Zn) ^{2–} –}	225
	8. The Neat Ternary Solid K _{5-x} Co _{1-x} Sn ₉ with Endohedral [Co@Sn ₉] ⁵⁻ Cluster Units: A Precursor for Soluble Intermetalloid [Co ₂ @Sn ₁₇] ⁵⁻ Clusters	233
	9. Linking Deltahedral Zintl Clusters with Conjugated Organic Building Blocks: Synthesis and Characterization of the Zintl Triad [R-Ge ₉ -CH=CH-CH=CH-Ge ₉ -R] ⁴⁻	243
	10. Reaction of SiCl ₂ ·dipp with K[Ge ₉ {Si(SiMe ₃) ₃ } ₃] – Synthesis and Characterization of [K(dipp) ₂][Ge ₉ {Si(SiMe ₃) ₃ } ₃]·tol and [dipp-H][Ge ₉ {Si(SiMe ₃) ₃ } ₃]·2acn [dipp = 1,3-Bis(2,6-Diisopropylphenyl)-imidazol-2-ylidene]	251

11. On the Nature of Bridging Metal Atoms in Intermetalloid Clusters: Synthesis and Structure of the Metal-Atom-Bridged Zintl Clusters $[Sn(Ge_9)_2]^{4-}$ and $[Zn(Ge_9)_2)]^{6-}$	259
12. Metal-Centered Zintl Ions Isolated by Direct Extraction from Endohedral Intermetallic Precursor: $[Co_{1-x}@Sn_9]^{4-}$ ($x \approx 0.32$) and $[Co_2@Sn_{17}]^{5-}$	269
13. Soluble Zintl Phases A_{14} ZnGe ₁₆ ($A = K$, Rb) Featuring $[(\eta^3 - Ge_4)Zn(\eta^2 - Ge_4)]^{6-}$ and $[Ge_4]^{4-}$ Clusters and the Isolation of $[(MesCu)_2(\eta^3, \eta^3 - Ge_4)]^{4-}$: The Missing Link in the Solution Chemistry of Tetrahedral Group 14 Element Zintl Clusters	279
14. $[(\eta^2-(Si/Ge)_4)Zn(\eta^2-(Si/Ge)_4)]^{6-}$ – novel Zintl clusters with mixed Si/Ge tetrahedra bridged by a Zn atom	293
15. Structure and Vibrational Analyses of LiP ₁₅	299
16. Synthesis, Structure, and Properties of NaP ₇ , a Phosphorus-rich Polyphosphide	311