Contents

Preface ---- VII

Part I: Theory

Chapter 1	First-Order Differential Equations —— 3
1.1	Preliminaries —— 3
1.2	Classes of First-Order Differential Equations —— 6
1.2.1	Differential Equations with Separable Variables —— 6
1.2.2	Differential Equations of Homogeneous Type — 7
1.2.3	First-Order Linear Differential Equations —— 8
1.2.4	Bernoulli Equations —— 13
1.2.5	Riccati Equations —— 14
1.3	Mathematical Modeling with First-Order Differential Equations —— 15
1.3.1	Radioactive Decay —— 15
1.3.2	Newton's Law of Heat Transfer —— 16
1.3.3	Chemical Reactions —— 17
1.3.4	Population Growth of a Single Species —— 18
1.3.5	The Gompertz Equation —— 20
Chapter 2	Linear Differential Systems —— 22
2.1	Preliminaries —— 22
2.2	Mathematical Modeling with Linear Differential Systems —— 23
2.3	Matrix Notation for Systems —— 26
2.4	Superposition Principle for Linear Systems —— 27
2.5	Linear Differential Systems with Constant Coefficients —— 28
2.5.1	The General Solution —— 28
2.5.2	Structure of Solution Set for Homogeneous Linear Systems —— 31
2.5.3	The Concept of Fundamental Matrix —— 32
2.5.4	Method of Eigenvalues and Eigenvectors —— 35
2.6	Method of Variation of Parameters —— 40
2.7	Higher-Dimensional Linear Systems —— 42
2.8	Use of the Jordan Canonical Form of a Matrix —— 44
2.9	Dynamic Aspects of Differential Systems —— 46
2.10	Preliminaries of Stability —— 52
Chapter 3	Second-Order Differential Equations —— 53
3.1	Newton's Second Law of Motion —— 53
3 2	Reduction of Order 54

3.3	Equivalence to a First-Order System —— 57
3.4	The Method of Elimination —— 58
3.5	Linear Second-Order Differential Equations —— 59
3.5.1	The Solution Set —— 59
3.5.2	Homogeneous Linear Equations with Constant Coefficients —— 59
3.5.3	Variation of Parameters Method —— 61
3.5.4	The Method of Undetermined Coefficients —— 62
3.5.5	Euler Equations —— 64
3.6	Boundary Value Problems —— 66
3.7	Higher-Order Linear Differential Equations —— 69
Chapter 4	Nonlinear Differential Equations —— 72
4.1	Mathematical Models Expressed by Nonlinear Systems —— 72
4.1.1	The Lotka–Volterra Model —— 72
4.1.2	The SIR Epidemic Model —— 73
4.1.3	An Immunological Model —— 74
4.1.4	A Model in Hematology —— 75
4.2	Gronwall's Inequality —— 75
4.3	Uniqueness of Solutions for the Cauchy Problem — 77
4.4	Continuous Dependence of Solutions on the Initial Values —— 81
4.5	The Cauchy Problem for Systems —— 83
4.6	The Cauchy Problem for Higher-Order Equations —— 84
4.7	Periodic Solutions —— 85
4.8	Picard's Method of Successive Approximations — 88
4.8.1	Picard's Iteration —— 88
4.8.2	The Interval of Picard's Iteration —— 91
4.8.3	Convergence of Picard's Iteration —— 92
4.9	Existence of Solutions for the Cauchy Problem —— 93
Chapter 5	Stability of Solutions —— 97
5.1	The Notion of a Stable Solution —— 97
5.2	Stability of Linear Systems —— 99
5.3	Stability of Linear Systems with Constant Coefficients —— 100
5.4	Stability of Solutions of Nonlinear Systems —— 101
5.5	Method of Lyapunov Functions —— 106
5.6	Globally Asymptotically Stable Systems —— 111
Chapter 6	Differential Systems with Control Parameters —— 113
6.1	Bifurcations —— 113
6.2	Hopf Bifurcations —— 115
6.3	Optimization of Differential Systems —— 119
6.4	Dynamic Optimization of Differential Systems —— 122

Part II: Exercises

Seminar 1	Classes of First-Order Differential Equations —— 127
1.1	Solved Exercises —— 127
1.2	Proposed Exercises —— 129
1.3	Solutions — 130
1.4	Project: Problems of Geometry that Lead to
	Differential Equations —— 131
Seminar 2	Mathematical Modeling with Differential Equations —— 133
2.1	Solved Exercises —— 133
2.2	Proposed Exercises —— 135
2.3	Hints and Answers —— 136
2.4	Project: Influence of External Actions over the Evolution
	of Some Processes —— 136
Seminar 3	Linear Differential Systems —— 139
3.1	Solved Exercises —— 139
3.2	Proposed Exercises —— 143
3.3	Hints and Solutions —— 145
3.4	Project: Mathematical Models Represented by Linear Differential
	Systems —— 146
Seminar 4	Second-Order Differential Equations —— 148
4.1	Solved Exercises —— 148
4.2	Proposed Exercises —— 150
4.3	Solutions — 151
4.4	Project: Boundary Value Problems for Second-Order Differential
	Equations —— 152
Seminar 5	Gronwall's Inequality —— 154
5.1	Solved Exercises —— 154
5.2	Proposed Exercises —— 157
5.3	Hints and Solutions —— 157
5.4	Project: Integral and Differential Inequalities —— 158
Seminar 6	Method of Successive Approximations —— 163
6.1	Solved Exercises —— 163
6.2	Proposed Exercises —— 164

VII	_		
XII	 Con	ıten	ts

6.3	Hints and Solutions —— 165
6.4	Project: The Vectorial Method for the Treatment of Nonlinear Differential
	Systems —— 165
Seminar 7	Stability of Solutions —— 170
7.1	Solved Exercises —— 170
7.2	Proposed Exercises —— 172
7.3	Hints and Solutions —— 173
7.4	Project: Stable and Unstable Invariant Manifolds —— 173
Part III:	Maple Code
Lab 1	Introduction to Maple —— 179
1.1	Numerical Calculus —— 179
1.2	Symbolic Calculus —— 181
Lab 2	Differential Equations with Maple —— 185
2.1	The DEtools Package —— 185
2.2	Working Themes —— 186
Lab 3	Linear Differential Systems —— 188
3.1	The linalg Package —— 188
3.2	Linear Differential Systems —— 188
3.3	Working Themes —— 190
Lab 4	Second-Order Differential Equations —— 191
4.1	Spring-Mass Oscillator Equation with Maple —— 191
4.2	Boundary Value Problems with Maple —— 193
4.3	Working Themes —— 193
Lab 5	Nonlinear Differential Systems —— 195
5.1	The Lotka–Volterra System —— 195
5.2	A Model from Hematology —— 196
5.3	Working Themes —— 197
Lab 6	Numerical Computation of Solutions —— 198
6.1	Initial Value Problems —— 198
6.2	Boundary Value Problems —— 199
6.3	Working Themes —— 202

Lab 7	Writing Custom Maple Programs —— 204		
7.1	Method of Successive Approximations — 204		
7.2	Euler's Method —— 206		
7.3	The Shooting Method —— 208		
7.4	Working Themes —— 211		
Lab 8	Differential Systems with Control Parameters —— 212		
8.1	Bifurcations —— 212		
8.2	Optimization with Maple —— 213		
8.3	Working Themes —— 215		
Bibliogra	aphy —— 217		
Index —	- 219		