

Contents

Preface *XIII*

Abbreviations *XV*

Symbols *XVII*

1 **Introduction** *1*

- 1.1 General Considerations *1*
- 1.1.1 The Current–Potential Relationship *1*
- 1.1.2 The Resistance of the Interface Can Be Infinite *2*
- 1.1.3 The Transition from Electronic to Ionic Conduction *3*
- 1.1.4 Mass-Transport Limitation *3*
- 1.1.5 The Capacitance at the Metal/Solution Interface *5*
- 1.2 Polarizable and Nonpolarizable Interfaces *5*
- 1.2.1 Phenomenology *5*
- 1.2.2 The Equivalent Circuit Representation *6*

2 **The Potentials of Phases** *9*

- 2.1 The Driving Force *9*
- 2.1.1 Definition of the Electrochemical Potential *9*
- 2.1.2 Separability of the Chemical and the Electrical Terms *10*
- 2.2 Two Cases of Special Interest *12*
- 2.2.1 Equilibrium of a Species Between Two Phases in Contact *12*
- 2.2.2 Two Identical Phases Not at Equilibrium *13*
- 2.3 The Meaning of the Standard Hydrogen Electrode (SHE) Scale *14*

3 **Fundamental Measurements in Electrochemistry** *17*

- 3.1 Measurement of Current and Potential *17*
- 3.1.1 The Cell Voltage Is the Sum of Several Potential Differences *17*
- 3.1.2 Use of a Non-Polarizable Counter Electrode *17*
- 3.1.3 The Three-Electrode Measurement *18*
- 3.1.4 Residual jR_S Potential Drop in a Three-Electrode Cell *19*
- 3.2 Cell Geometry and the Choice of the Reference Electrode *20*

Physical Electrochemistry: Fundamentals, Techniques and Applications. Eliezer Gileadi
 Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
 ISBN: 978-3-527-31970-1

3.2.1	Types of Reference Electrodes	20
3.2.2	Use of an Auxiliary Reference Electrode for the Study of Fast Transients	21
3.2.3	Calculating the Uncompensated Solution Resistance for a Few Simple Geometries	21
3.2.3.1	Planar Configuration	21
3.2.3.2	Cylindrical Configuration	22
3.2.3.3	Spherical Symmetry	22
3.2.4	Positioning the Reference Electrode	24
3.2.5	Edge Effects	25
4	Electrode Kinetics: Some Basic Concepts	29
4.1	Relating Electrode Kinetics to Chemical Kinetics	29
4.1.1	The Relation of Current Density to Reaction Rate	29
4.1.2	The Relation of Potential to Energy of Activation	30
4.1.3	Mass-Transport versus Charge-Transfer Limitation	32
4.1.4	The Thickness of the Nernst Diffusion Layer	33
4.2	Methods of Measurement	35
4.2.1	Potential Control versus Current Control	35
4.2.2	The Need to Measure Fast Transients	37
4.2.3	Polarography and the Dropping-Mercury Electrode (DME)	40
4.2.4	Application of the Stationary Dropping-Mercury Electrode for Kinetic Studies	43
4.3	Rotating Electrodes	44
4.3.1	The Rotating Disc Electrode (RDE)	44
4.3.2	The Rotating Cone Electrode (RConeE)	49
4.3.3	The Rotating Ring-Disc Electrode (RRDE)	49
4.3.4	Rotating Cylinder Electrode (RCylE)	51
4.4	The Physical Meaning of Reversibility	52
5	Single-Step Electrode Reactions	55
5.1	The Overpotential, η	55
5.1.1	Definition and Physical Meaning of Overpotential	55
5.1.2	Types of Overpotential	57
5.2	Fundamental Equations of Electrode Kinetics	59
5.2.1	The Empirical Tafel Equation	59
5.2.2	Transition-State Theory	59
5.2.3	The Equation for a Single-Step Electrode Reaction	61
5.2.4	Limiting Cases of the General Equation	63
5.3	The Symmetry Factor in Electrode Kinetics	66
5.3.1	The Definition of β	66
5.3.2	The Numerical Value of β	68
5.4	The Marcus Theory of Charge Transfer	68
5.4.1	Outer-Sphere Electron Transfer	68
5.4.2	The Born–Oppenheimer Approximation	69

5.4.3	The Calculated Energy of Activation	71
5.4.4	The Value of β and Its Potential Dependence	71
5.5	Time-Resolved Kinetics of Charge Transfer	72
5.5.1	Metal Deposition and Dissolution	72
6	Multi-Step Electrode Reactions	77
6.1	Mechanistic Criteria	77
6.1.1	The Transfer Coefficient, α , and Its Relation to the Symmetry Factor, β	77
6.1.2	Steady State and Quasi-Equilibrium	79
6.1.3	Calculation of the Tafel Slope	81
6.1.4	Reaction Orders in Electrode Kinetics	84
6.1.5	The Effect of pH on Reaction Rates	88
6.1.6	The Enthalpy of Activation	90
7	Specific Examples of Multi-Step Electrode Reactions	93
7.1	Experimental Considerations	93
7.1.1	Multiple Processes in Parallel	93
7.1.2	The Level of Impurity That Can Be Tolerated	94
7.2	The Hydrogen-Evolution Reaction	98
7.2.1	Hydrogen Evolution on Mercury	98
7.2.2	Hydrogen Evolution on Platinum	99
7.3	Hydrogen Storage and Hydrogen Embrittlement	102
7.3.1	Hydrogen Storage	102
7.3.2	Hydrogen Embrittlement	104
7.4	Possible Paths for the Oxygen-Evolution Reaction	105
7.5	The Role and Stability of Adsorbed Intermediates	108
7.6	Catalytic Activity: The Relative Importance of j_0 and b	109
7.7	Adsorption Energy and Catalytic Activity	110
7.8	Electrocatalytic Oxidation of Methanol	112
8	The Ionic Double-Layer Capacitance C_{dl}	113
8.1	Theories of Double-Layer Structure	113
8.1.1	Phenomenology	113
8.1.2	The Parallel-Plate Model of Helmholtz	115
8.1.3	The Diffuse-Double-Layer Theory of Gouy and Chapman	116
8.1.4	The Stern Model	118
8.1.5	The Role of the Solvent at the Interface	121
8.1.6	Simple Instrumentation for the Measurement of C_{dl}	123
9	Electrocapillarity	127
9.1	Thermodynamics	127
9.1.1	Adsorption and Surface Excess	127
9.1.2	The Gibbs Adsorption Isotherm	129
9.1.3	The Electrocapillary Equation	130

9.2	Methods of Measurement and Some Results	132
9.2.1	The Electrocapillary Electrometer	132
9.2.2	Some Experimental Results	137
9.2.2.1	The Adsorption of Ions	137
9.2.2.2	Adsorption of Neutral Molecules	138
10	Nanotechnology and Electrocatalysis	141
10.1	The Effect of Size on Phase Transformation	141
10.1.1	Introduction	141
10.1.2	The Vapor Pressure of Small Droplets and the Melting Point of Solid Nanoparticles	142
10.1.3	The Thermodynamic Stability and Thermal Mobility of Nanoparticles	144
10.2	The Effect of Particle Size on Catalytic Activity	146
10.2.1	Does a Higher Energy of Adsorption Indicate Higher Catalytic Activity?	146
10.2.2	Nanoparticles Compared to Microelectrodes	147
10.2.3	The Need for High Surface Area	148
11	Intermediates in Electrode Reactions	151
11.1	Adsorption Isotherms for Intermediates Formed by Charge Transfer	151
11.1.1	General	151
11.1.2	The Langmuir Isotherm and Its Limitations	151
11.1.3	Relating Bulk Concentration to Surface Coverage	153
11.1.4	Application of the Langmuir isotherm for Charge-Transfer Processes	153
11.1.5	The Frumkin and Temkin Isotherms	155
11.2	The Adsorption Pseudocapacitance C_ϕ	157
11.2.1	Formal Definition of C_ϕ and Its Physical Significance	157
11.2.2	The Equivalent Circuit Representation	159
11.2.3	Calculation of C_ϕ as a function of θ and E	160
11.2.3.1	The Langmuir Isotherm	160
11.2.3.2	The Frumkin Isotherm	161
11.2.4	The Case of Negative Values of the Parameter f	163
12	Underpotential Deposition and Single-Crystal Electrochemistry	165
12.1	Underpotential Deposition (UPD)	165
12.1.1	Definition and Phenomenology	165
12.1.2	UPD on Single Crystals	169
12.1.3	Underpotential Deposition of Halogen Atoms	171
12.1.4	Underpotential Deposition of Atomic Oxygen and Hydrogen	172
13	Electrosorption	175
13.1	Phenomenology	175

13.1.1	What is Electrosorption? 175
13.1.2	Electrosorption of Neutral Organic Molecules 177
13.1.3	The Potential of Zero Charge, E_z , and Its Importance in Electrosorption 178
13.1.4	The Work Function and the Potential of Zero Charge 181
13.2	Methods of Measurement and Some Experimental Results 182
13.2.1	Electrosorption on Solid Electrodes 182
13.2.2	The Radiotracer Methods 185
13.2.3	Methods Based on the Change in Bulk Concentration 185
13.2.4	The Lipkowski Method 186
13.3	Adsorption Isotherms for Neutral Species 188
13.3.1	General Comments 188
13.3.2	The Parallel-Plate Model of Frumkin 189
13.3.3	The Water-Replacement Model of Bockris, Devanathan and Muller 191
14	Experimental Techniques 195
14.1	Fast Transients 195
14.1.1	The Need for Fast Transients 195
14.1.2	Small-Amplitude Transients 197
14.1.3	The Sluggish Response of the Electrochemical Interface 199
14.1.4	How can the Slow Response of the Interface be Overcome? 199
14.1.4.1	Galvanostatic Transient 199
14.1.4.2	The Double-Pulse Galvanostatic Method 200
14.1.4.3	The Coulostatic (Charge-Injection) Method 201
14.2	The Time-Dependent Diffusion Equation 204
14.2.1	The Boundary Conditions of the Diffusion Equation 204
14.2.1.1	Potential Step, Reversible Case (Chrono-amperometry) 205
14.2.1.2	Potential Step, High Overpotential Region (Chrono-amperometry) 208
14.2.1.3	Current Step (Chronopotentiometry) 209
14.2.2	Open-Circuit-Decay Transients 211
14.3	Microelectrodes 213
14.3.1	The Unique Features of Microelectrodes 213
14.3.2	Enhancement of Diffusion at a Microelectrode 214
14.3.3	Reduction of Solution Resistance 215
14.3.4	The Choice Between Single Microelectrodes or Ensembles of Thousands of Microelectrodes 216
14.3.5	Shapes of Microelectrodes and Ensembles 219
15	Experimental Techniques (2) 221
15.1	Linear Potential Sweep and Cyclic Voltammetry 221
15.1.1	Three Types of Linear Potential Sweep 221
15.1.2	Double-Layer-Charging Currents 223
15.1.3	The Form of the Current–Potential Relationship 225
15.2	Solution of the Diffusion Equations 226
15.2.1	Reversible Region 227

15.2.2	High-Overpotential Region	228
15.3	Uses and Limitations of LPS and CV	229
15.4	Cyclic Voltammetry for Monolayer Adsorption	232
15.4.1	Reversible region	232
15.4.2	High-Overpotential Region	235
16	Experimental Techniques (3)	237
16.1	Electrochemical Impedance Spectroscopy (EIS)	237
16.1.1	Introduction	237
16.1.2	Graphical Representations	241
16.2	The Effect of Diffusion Limitation	244
16.2.1	The Warburg Impedance is a Constant-Phase Element	244
16.2.2	Some Experimental Results	248
17	The Electrochemical Quartz Crystal Microbalance	253
17.1	Fundamental Properties	253
17.1.1	Introduction	253
17.1.2	The Fundamental Equations of the QCM	254
17.1.3	The Effect of Viscosity	255
17.1.4	Immersion in a Liquid	256
17.1.5	Scales of Roughness	256
17.2	Impedance Analysis of the EQCM	258
17.2.1	The Extended Equation for the Frequency Shift	258
17.2.2	Other Factors Influencing the Frequency Shift	258
17.2.3	Analysis of the Mechanical Impedance Spectrum	259
17.3	Use of the EQCM as a Microsensor	262
17.3.1	Some Applications of the EQCM	262
17.3.2	Plating of a Metal on a Foreign Substrate	263
18	Corrosion	265
18.1	Scope and Economics of Corrosion	265
18.1.1	Introduction	265
18.1.2	The Fundamental Electrochemistry of Corrosion	266
18.1.3	Micropolarization Measurements	271
18.2	Potential-pH Diagrams	273
18.2.1	Some Examples of Potential-pH Diagrams	273
18.2.2	Passivation and Its Breakdown	280
18.2.3	Localized Corrosion	283
18.2.3.1	Pitting Corrosion	283
18.2.3.2	Crevice Corrosion	285
18.3	Corrosion Protection	286
18.3.1	Bimetallic (Galvanic) Corrosion	286
18.3.2	Cathodic Protection	288
18.3.3	Anodic Protection	290
18.3.4	Coatings and Inhibitors	291

19	Electroplating	293
19.1	General Observations	293
19.1.1	Introduction	293
19.1.2	The Fundamental Equations of Electroplating	294
19.1.3	Practical Aspects of Metal Deposition	295
19.1.4	Hydrogen Evolution as a Side Reaction	296
19.1.5	Plating of Noble Metals	296
19.2	Current Distribution in Plating	297
19.2.1	Uniformity of Current Distribution	297
19.2.2	The Faradaic Resistance, R_F and the Solution Resistance, R_S	298
19.2.3	The Dimensionless Wagner Number, W_a	298
19.2.4	Kinetically Limited Current Density	302
19.3	Throwing Power	303
19.3.1	Macro-Throwing Power	303
19.3.2	Micro-Throwing Power	304
19.3.3	The Use of Additives	305
19.4	Plating from Nonaqueous Solutions	307
19.4.1	Statement of the Problem	307
19.4.2	Methods of Plating of Aluminum	308
19.5	Electroplating of Alloys	310
19.5.1	General Observations	310
19.5.2	Some Specific Examples	312
19.6	Electroless Deposition of Metals	313
19.6.1	Some Fundamental Aspects of Electroless Plating of Metals and Alloys	313
19.6.2	Advantage and Disadvantages Compared to Electroplating	315
19.7	The Mechanism of Charge Transfer in Metal Deposition	316
19.7.1	Metal Deposition is an Unexpectedly Fast Reaction	316
19.7.2	What Carries the Charge Across the Interface During Metal Deposition?	317
19.7.3	Microscopic Reversibility and the Anodic Dissolution of Metals	318
19.7.4	Reductio Ad Absurdum	319
19.7.5	Migration of the Ion Across the Double Layer	320
19.7.6	The Mechanism of Ion Transfer	321
19.7.7	The Symmetry Factor, β	322
19.7.8	The Exchange-Current Density, j_0	324
19.7.9	Why Are Some Electrode Reactions Fast?	325
20	Energy Conversion and Storage	329
20.1	Batteries and Fuel Cells	329
20.1.1	Classes of Batteries	329
20.1.1.1	Primary Batteries	329
20.1.1.2	Rechargeable Batteries	330
20.1.1.3	Fuel Cells	331
20.1.2	The Theoretical Limit of Energy Per Unit Weight	332

20.1.3	How Is the Quality of a Battery Defined?	333
20.2	Primary Batteries	333
20.2.1	Why Do We Need Primary Batteries?	333
20.2.2	The Leclanché and the Alkaline Batteries	334
20.2.3	The Li-Thionyl Chloride Battery	335
20.2.4	The Lithium-Iodine Solid State Battery	338
20.3	Secondary Batteries	338
20.3.1	Self-Discharge and Cycle Life	338
20.3.2	Battery Stacks versus Single Cells	339
20.3.3	Some Common Types of Secondary Batteries	339
20.3.3.1	The Lead-Acid Battery	339
20.3.3.2	The Nickel-Cadmium Battery	341
20.3.3.3	The Nickel-Metal Hydride Battery (NiMH)	343
20.3.4	The Li-Ion Battery	344
20.4	Fuel Cells	346
20.4.1	The Energy Density of Fuel Cells	346
20.4.1.1	The Hydrogen-Oxygen Fuel Cell	346
20.4.2	Fuel Cells Using Hydrocarbons – the Phosphoric Acid Fuel Cell (PAFC)	346
20.4.3	The Direct Methanol Fuel Cell (DMFC)	348
20.4.3.1	The Anode	349
20.4.3.2	The Polymer Electrolyte Membrane (PEM)	350
20.4.3.3	The Reduction of Molecular Oxygen at the Cathode	351
20.4.4	High-Temperature Fuel Cells	352
20.4.4.1	The High-Temperature Solid-Oxide (HTSO) Fuel Cell	353
20.4.4.2	The Molten Carbonate Fuel Cell	353
20.4.5	Why Do We Need a Fuel Cell?	354
20.5	Porous Gas Diffusion Electrodes	356
20.6	The Polarity of Batteries	358
20.7	Super-Capacitors	358
20.7.1	Electrostatic Considerations	358
20.7.2	The Energy Stored in a Capacitor	360
20.7.3	The Advantage of Electrochemical Super-Capacitors	361
20.7.4	Hybrid Super-Capacitors	361