Contents to Volume 1

List of Contributors xvii About the Series Editors xxxiii

Part I Biocatalysis 1

1	Introduction to Emerging Areas in Bioengineering 3
	Ho Nam Chang
1.1	Biotechnology 3
1.1.1	Short Histories 3
1.1.2	Application Areas 4
1.1.3	Markets and Industries 5
1.1.4	Scope of Biotechnology 6
1.2	Bioengineering 6
1.2.1	History of Engineering 6
1.2.2	Two Different Bioengineering 7
1.2.3	Chemical Engineering 7
1.2.3.1	The First Chemical Engineer 8
1.2.4	Biochemical Engineering (1945–1978) 8
1.2.4.1	Penicillin Production 8
1.2.4.2	Mass Production of Penicillin 9
1.2.5	Biochemical Engineering Education 10
1.2.6	Biomedical Medical Engineering Activities (before 1970) 11
1.3	Emerging Areas 12
1.3.1	Evolvement (Birth) 12
1.3.2	Biological Engineering 12
1.3.3	Bioengineering/Biological Engineering in Chemical Engineering
	Department 13
1.3.4	Biomaterials 14
1.3.5	Marine Biotechnology 14
1.3.5.1	Marine Biotechnology 15
1.3.6	Environmental Biotechnology 15
1.3.7	Biomedical Engineering 15
1.3.8	Multidisciplinary (OMICS) Approach 17

1.3.8.1 1.3.8.2 1.4	Biomusical Engineering 17 Journal of Bioterrorism and Defense 17 Current Volume 17 Acknowledgments 18 References 19
2	Over-Expression of Functionally Active Inclusion Bodies of Enzymes in Recombinant Escherichia coli 21 Wen-Chien Lee and Shao-Yen Hsu
2.1	Introduction 21
2.2	Formation and Composition of IBs 21
2.3	
2.4	Applications of Enzyme-Based IBs 25
2.5	An Example of IBs: <i>N</i> -acetyl-D-neuraminic Acid Aldolase 26
2.6	Concluding Remarks 29
2.0	Acknowledgments 30
	References 30
3	Enzymatic Reactions in Ionic Liquids 35 Ngoc Lan Mai and Yoon-Mo Koo
3.1	Introduction 35
3.2	Enzymatic Reactions in Ionic Liquids 37
3.2.1	Hydrolytic Enzymes in Ionic Liquids 39
3.2.2	Nonhydrolytic Enzymes in Ionic Liquids 44
3.2.2.1	Oxidoreductases in Ionic Liquids 44
3.2.2.2	Other Enzymes in Ionic Liquids 46
3.2.3	Whole Cell-Catalyzed Reactions in Ionic Liquids 47
3.3	Factors Affecting Enzymatic Reactions in Ionic Liquids 47
3.4	Methods to Improve Enzyme Activity and Stability in Ionic Liquids 49
3.4.1	Modification of Enzymes 50
3.4.2	Modification of Solvents 51
3.4.3	Designing Enzyme-Compatible Ionic Liquids 52
3.5	Conclusions and Perspectives 52
	Abbreviations of Ionic Liquids 53
	Cations 53
	Anions 53
	References 54
4	Enzyme Immobilization on Nanoparticles: Recent Applications 67 Cheng-Kang Lee and Ai-Nhan Au-Duong
4.1	Introduction 67
4.2	Preparation of Enzyme-Immobilized Nanoparticles 68
4.2.1	Physical Adsorption 68
4.2.2	Encapsulation/Entrapment 69

4.2.3 4.2.4	Covalent Attachments 70 Cross-Linking 70
4.2.5	Bioaffinity Interactions and Other Methods 71
4.3	Application of Enzyme Nanoparticles 71
4.3.1	EnNP for Biomedical Application 71
4.3.1.1	EnNP for Thrombolytic Therapy 72
4.3.1.2	EnNP for Inflammation and Oxidative Stress Therapy 72
4.3.1.3	EnNP for Antibacterial Treatment 73
4.3.1.3	EnNP for Biosensor Applications 73
4.3.3	EnNP for Biofuel Production 75
4.4	Conclusion and Perspectives 75 References 76
5	Whole Cell Biocatalysts Using Enzymes Displayed on Yeast Cell
	Surface 81
	Kentaro Inokuma, Tomohisa Hasunuma, and Akihiko Kondo
	Concise Definition of Subject 81
5.1	Introduction 81
5.2	GPI-Anchoring System 82
5.3	C-Terminus Free Display Systems 83
5.4	Applications of the Yeast Cell Surface Display System for Biocatalysts 84
5.5	Improvement of Catalytic Activity on the Yeast Cell Surface 85
5.5.1	Improvement of Gene Cassettes for Cell Surface Display 86
5.5.2	Gene Deletion of Host Cells 87
5.5.3	Ratio Optimization of Displaying Enzymes 87
5.6	Conclusions 88
	References 90
6	Design of Artificial Supramolecular Protein Assemblies by Enzymatic
	Bioconjugation for Biocatalytic Reactions 93
	Geisa A.L.G. Budinova, Yutaro Mori, and Noriho Kamiya
	Concise Definition of Subject 93
6.1	Introduction 93
6.2	Protein Assembly on a Template with Specific Interaction/Reaction Sites 94
6.2.1	Non-covalent Alignment on a Template 94
6.2.2	Covalent Attachment to a Template 95
6.2.2.1	Enzymes for Site-Specific Covalent Cross-linking of Proteins 95
6.2.2.2	Site-Specific Covalent Cross-linking of Enzymes on Nucleic Acid Scaffolds 96
6.3	Protein Assembly without a Template: Self-Assembly of Protein Units 97
6.3.1	Non-covalent Assembly 97
6.3.1.1	Self-Assembly by Peptide Assemblies 97

6.3.1.2	Site-Specific Ligand – Receptor Interactions 98
6.3.2	Covalent Assembly 98
6.3.2.1	Site-Specific Tyrosyl Radical Formation by Horseradish
	Peroxidase 98
6.4	Future Prospects 100
	Acknowledgment 101
	Conflict of Interest 101
	References 101
7	Production of Valuable Phenolic Compounds from Lignin by
	Biocatalysis: State-of-the-Art Perspective 105
	Somchart Maenpuen, Ruchanok Tinikul, Pirom Chenprakhon, and
	Pimchai Chaiyen
7.1	Lignin and Its Composition 105
7.1.1	Composition of Lignin 105
7.1.2	Process to Convert Lignin into Aromatic Monomers 105
7.1.2.1	Extraction of Lignin from Lignocellulose 105
7.1.2.2	Deconstruction of Lignin Using Physicochemical Processes 107
7.1.2.3	Deconstruction of Lignin Using Biological Processes 107
7.2	Phenol Derivatives Derived from Lignin Deconstruction 112
7.3	Biocatalysis to Increase the Value of Lignin-Derived Phenolic
	Compounds 112
7.3.1	Addition of an Extra Moiety 113
7.3.1.1	Esterification 113
7.3.1.2	Glycosylation 113
7.3.2	Modification of Aromatic Ring Substituent 114
7.3.2.1	Hydroxylation/Monooxygenation 115
7.3.2.2	Methylation 116
7.3.2.3	Demethylation 116
7.3.2.4	Decarboxylation/Carboxylation 117
7.4	Outlook and Future Perspectives 118
	Acknowledgments 118
	References 118
	Part II Biofuels and Renewable Energy from Biomass 125
	Taken Distance and Nenemanic Line, 3, in Sim Distincts
8	Biofuels, Bio-Power, and Bio-Products from Sustainable Biomass:
	Coupling Energy Crops and Organic Waste with Clean Energy
	Technologies 127
	Serpil Guran, Foster A. Agblevor, and Margaret Brennan-Tonetta
8.1	Introduction 127
8.2	Sustainable Biomass for Sustainable Development 127
8.2.1	Food – Energy – Water (FEW) Nexus Concept: 128
8.2.1.1	Sustainable Biomass 128
8.2.1.2	Determining Biomass Sustainability 129

8.3	Biorefineries and Bioenergy Conversion Pathways 131
8.3.1	Biorefineries 131
8.3.2	Biomass-to-Bioenergy and Bio-products Conversion Pathways 132
8.3.2.1	Biochemical Conversion Processes 132
8.3.2.2	Thermochemical Conversion Processes of Biomass 142
8.4	Conclusions 154
	References 154
	Further Reading/Resources 160
	·
9	Potential Lignocellulosic Biomass Resources in ASEAN Countries 163
	Shankar Ramanathan, Madihah Md Salleh, Adibah Yahya, Huszalina Hussin,
	Wan R.Z. Wan Dagang, Shaza E. Mohamad, Zaharah Ibrahim, Rohaya Mohd
	Noor, Nursyifaaiyah Abdul Aziz, Zulkefflizan Jamaludin, and
	Syariffah Nuratiqah Syed Yaacob
9.1	Introduction and Characterization of Lignocellulosic Biomass in
	ASEAN Countries 163
9.2	Forest Residues in ASEAN Countries 165
9.3	Herbaceous Plants Residues in ASEAN Countries 165
9.4	Agriculture Residue in ASEAN Countries 168
9.5	ASEAN Government Programs and Policies on Natural
	Biomass 169
	References 170
10	Volatile Fatty Acid Platform: Concept and Application 173
10	Nag-Jong Kim, Seong-Jin Lim, and Ho Nam Chang
10.1	Concept of Volatile Fatty Acid Platform 173
10.1.1	Platforms for Biofuel Production 173
10.1.1	Sugar Platform 173
10.1.1.1	Syngas Platform 174
10.1.1.2	. •
	Development of Volatile Fatty Acid Platform 175
10.1.2.1	Anaerobic Digestion Process 175 Mixed VFAs Fermentation 176
10.1.2.2	
10.1.2.3	VFA Platform Development 177
10.1.3	Comparison of Biofuel Production Platforms 177 The austical Comparison of Major Platforms for Ethanel
10.1.3.1	Theoretical Comparison of Major Platforms for Ethanol Production 177
10122	
10.1.3.2	Biomass Properties Needed for Each Platform 178
10.1.3.3	Advantages and Disadvantages of Three Major Platforms 178
10.2	Application of VFA Platform 179
10.2.1	Pure and Mixed Acids as Chemicals 179
10.2.2	VFA Conversion to Value-Added Products 180
10.2.2.1	Mixed Alcohols, Esters, and Ketones 182
10.2.2.2	Microbial Lipids and Polyhydroxyalkanoate (PHA) 182
10.2.3	VFA Use as a Carbon Source of Denitrification Process 184

10.2.4	Cost Analysis of Mixed Alcohol Produced from Various Raw Materials 185
10.3	Tasks for Commercialization 186
10.3.1	Technical Bottlenecks in Industrialization of the VFA Platform 186
10.3.2	Commercialization Activities of VFA Platform 187 References 188
11	Biological Pretreatment of Lignocellulosic Biomass for Volatile Fatty Acid Production 191
	Suraini Abd-Aziz, Mohamad F. Ibrahim, and Mohd A. Jenol
11.1	Introduction 191
11.2	Pretreatments to Improve VFA Production 193
11.2.1	Physical Pretreatment 193
11.2.2	Chemical Pretreatment 194
11.2.3	Biological Pretreatment 194
11.2.3.1	Microbial Pretreatment 194
11.2.3.2	Enzymatic Pretreatment 195
11.2.4	Combination Pretreatments 195
11.3	Future Prospect and Recent Technology Development 198 References 198
12	Microbial Lipid Production from Volatile Fatty Acids by Oleaginous Yeast 203 Gwon W. Park, Nag-Jong Kim, and Ho Nam Chang
12.1	Introduction 203
12.1.1	Background 203
12.1.1	Oleaginous Yeast 204
12.1.2.1	History 204
12.1.2.1	Metabolic Pathway 204
12.1.2.2	Biofuel Platforms 205
12.1.3	VFAs as a Carbon Source 207
12.3	Quality of Yeast Lipid 209
12.3.1	Cetane Number 209
12.3.1	Oleic Acid Component 209
12.3.3	Microbial Lipid Cost Assessment 210
12.3.4	Comparison with Oleaginous Yeast and Other Microorganisms 210
12.4	Conclusion 210
12.1	Acknowledgments 211
	References 211
13	Gasification Technologies for Lignocellulosic Biomass 215 Su J. Jeon, Soo H. Jeong, Beom J. Kim, and Uen D. Lee
13.1	Introduction 215
13.2	Gasification of Lignocellulosic Biomass 215

13.3	Overview of Gasification Technologies of Lignocellulosic Biomass 217
13.4	Classification of Gasification Technologies 218
13.5	Types of Gasification Systems 219
13.5.1	Direct or Autothermal Gasifiers 219
13.5.1.1	Auger-Type Gasifiers 221
13.5.1.2	Fixed (Moving) Bed Gasifiers 221
13.5.1.3	Entrained Flow Gasifiers 221
13.5.1.4	Fluidized Bed Gasifiers 223
13.5.2	Indirect or Allo-Thermal Gasifiers 224
13.5.2.1	Plasma or Plasma-Assisted Gasifiers 224
13.5.2.2	Dual fluidized Bed Gasifiers 226
13.5.2.3	Heat Pipe Gasifiers 228
13.5.3	Advanced Gasifiers 229
13.6	Performance Evaluation of Biomass Gasifiers 230
13.6.1	Fixed (Moving) Bed Gasifiers 233
13.6.2	Bubbling Fluidized Bed (BFB) Gasifiers 234
13.6.3	Circulating Fluidized Bed (CFB) Gasifier 239
	Dual Fluidized Bed (DFB) Gasifiers 241
13.6.4	Industrial Biomass Gasification Plants 245
13.7	
13.8	
	References 248
14	Separation of Butanol, Acetone, and Ethanol 255
	Di Cai, Song Hu, Peiyong Qin, and Tianwei Tan
14.1	Gas Stripping 256
14.2	Liquid – Liquid Extraction 260
14.3	Adsorption 262
14.4	Pervaporation 266
14.5	Distillation 271
14.6	Conclusion 278
	References 278
15	Overview of Microalgae-Based Carbon Capture and Utilization 287
	Ye Sol Shin, Jaoon Y. H. Kim, and Sang Jun Sim
15.1	Introduction 287
15.2	Capturing of Inorganic Carbon Using Photosynthesis 287
15.3	Microalgal Biofuel Production 289
15.3.1	Upstream Process: Strain Selection and Cultivation of the Selected
	Strain 289
15.3.1.1	Strain Selection 289
15.3.1.2	Cultivation Condition 290
15.3.2	Downstream Process: Harvesting, Dewatering, Disruption,
	Extraction, and Transesterification 291
15.4	Application of Microalgal By-Products 291

15.4.1	Bioproducts 291
15.5	Conclusion 292
	References 292
16	Bioengineering of Microbial Fuel Cells: From Extracellular Electron
	Transfer Pathway to Electroactive Biofilm 295
	Yang-Yang Yu, Dan-Dan Zhai, and Yang-Chun Yong
16.1	Microbial Fuel Cells: General Concept and Extracellular Electron
	Transfer 295
16.2	Electroactive Biofilm Meets with Biocompatible Materials 297
16.3	Bioengineering of Electroactive Biofilm: From Bacteria to
	Ecosystem 298
16.3.1	Engineering EET Pathways for Improved Electron Transfer 298
16.3.2	Engineering of Electroactive Biofilm in Microbial Fuel Cells 299
16.4	Conclusions and Future Perspectives 300
	Acknowledgments 301
	References 301
	Part III Synthetic Biology and Metabolic Engineering 305
17	Genome Editing Tools for Escherichia coli and Their Application in
	Metabolic Engineering and Synthetic Biology 307
	Chandran Sathesh-Prabu and Sung K. Lee
17.1	Introduction 307
17.2	Homologous Recombination-Mediated Tools 308
17.2.1	Antibiotic Resistance-Based Methods 308
17.2.2	Double-Stranded DNA Break Repair System-Based Methods 309
17.2.2.1	ZFNs/TALENs-Based Methods 310
17.2.2.2	CRISPR/Cas9-Mediated Genome Engineering 310
17.3	Single-Strand DNA-Mediated Recombination 312
17.3.1	Multiplex Automated Genome Engineering (MAGE) 312
17.3.2	Modified MAGE 313
17.4	Conclusion 314
	References 314
18	Synthetic Biology for Corynebacterium glutamicum: An Industrial Host
	for White Biotechnology 321
	Han Min Woo
18.1	Introduction 321
18.2	Synthetic Elements of Synthetic Biology for
	C. glutamicum 323
18.2.1	DNA Parts and Plasmids of Synthetic Biology for
	C. glutamicum 323
18.2.1.1	DNA Parts for C. glutamicum 323
18.2.1.2	Synthetic Platform of Plasmids for C. glutamicum 324

18.2.2	Devices and Genetic Biosensors of Synthetic Biology for C. glutamicum 324
18.2.3	Synthetic Biology of a Chassis for <i>C. glutamicum</i> 326
18.3	Conclusion and Outlook 326
	References 327
19	Metabolic Engineering of Solventogenic Clostridia for Butanol Production 331
	Sang-Hyun Lee and Kyoung Heon Kim
19.1	Introduction 331
19.1.1	History of Solventogenic Clostridia 331
19.1.2	Challenges for ABE Production by Fermentation 332
19.2	Biomass and Its Metabolism 333
19.2.1	General Characteristics of Sugar Metabolism 333
19.2.2	Lignocellulose 334
19.2.3	Glycerol 334
19.2.4	Marine Macroalgae 335
19.2.5	Syngas 335
19.2.6	Protein Waste 336
19.3	Metabolic Engineering of Clostridia 336
19.3.1	Genetic Tools for Clostridia 336
19.3.2	Improvement of Butanol Titer, Yield, Productivity, and Selectivity 337
19.3.3	Improvement of Pentose Utilization 339
19.3.4	Sporulation and Solvent Production by Clostridia 339
19.3.5	Metabolomics as a Tool for Engineering Clostridia 341
19.4	Concluding Remarks and Future Perspectives 341 References 341
20	Metabolic Engineering of Microorganisms for the Production of Lactate-Containing Polyesters 349
	Yokimiko David, Sang Yup Lee, and Si Jae Park
	Acknowledgments 355
	References 355
21	Microbial Metabolic Engineering for Production of Food
	Ingredients 359
	Eun J. Oh, Yong-Su Jin, and Jin-Ho Seo
21.1	Metabolic Engineering 359
21.1.1	Rational Approaches for Metabolic Engineering 359
21.1.2	Combinatorial Approaches for Metabolic Engineering 360
21.2	Biological Production of Functional Food Materials 361
21.2.1	Microbial Metabolic Engineering to Produce Human Milk Oligosaccharides (HMOs) 361
21.2.1.1	2-Fucosyllactose (2-FL) 361

21.2.1.2 21.2.2 21.2.2.1 21.2.2.2 21.2.3 21.2.3.1 21.2.3.2 21.3	Lacto-N-oligosaccharide Derivatives 365 Microbial Metabolic Engineering to Produce Sugar Alcohols 365 Xylitol 366 Sorbitol 367 Microbial Metabolic Engineering to Produce Vitamins 367 Riboflavin 368 Folate 368 Future Prospects 369 References 369
	Contents to Volume 2
	List of Contributors xix About the Series Editors $xxxv$
	Part IV Products 373
22	Application of Lactic Acid Bacteria for Food Biotechnology 375 Ling Li and Nam Soo Han
23	Biopolymers Based on Raw Materials from Biomass 399 Jonggeon Jegal
24	Bacterial Biofertilizers: High Density Cultivation 429 S. Mutturi and Virendra S. Bisaria
25	Current Research in Korean Herbal Cosmetics 441 Jun S. Park, Ga Y. Cho, and Sung-Il Park
	Part V Biosensing and Nanobiotechnology 463
26	Advanced Genetic Engineering of Microbial Cells for Biosensing Applications 465 Do Hyun Kim, Byung Jo Yu, and Moon II Kim
27	Bioelectronic Nose 477 Hwi Jin Ko, Eun Hae Oh, and Tai Hyun Park
28	Noninvasive Optical Imaging Techniques in Clinical Application 492 Uk Kang and Soo-Jin Bae
29	Advanced Short Tandem Repeat Genotyping for Forensic Human Identification 509 Yong T. Kim, Hyun Y. Heo, and Tae S. Seo

30	DNA Microarray-Based Technologies to Genotype Single Nucleotide Polymorphisms 531 Jung H. Park, Ye L. Jung, Kyungmee Lee, Changyeol Lee, Batule Bhagwan, and Hyun G. Park
31	Advanced Applications of Nanoscale Measuring System for Biosensors 557 Jong M. Kim and Sang-Mok Chang
32	Biosynthesis and Applications of Silver Nanoparticles 579 Bipinchandra K. Salunke and Beom Soo Kim
	Part VI Biomedical Engineering and Biopharmaceuticals 591
33	Smart Drug Delivery Devices and Implants 593 Ki Su Kim, Ho Sang Jung, Hyunsik Choi, Songeun Beack, Hyemin Kim, Jong Hwan Mun, Myeong Hwan Shin, Do Hee Keum, Heebeom Koo, Seok Hyun Yun, and Sei Kwang Hahn
34	Controlled Delivery Systems of Protein and Peptide Therapeutics 607 Hwiwon Lee, Minsoo Cho, Jeong Ho Lee, Jong Hwan Mun, Byung Woo Hwang, Hyemin Kim, and Sei Kwang Hahn
35	Cell Delivery Systems Using Biomaterials 617 Youngro Byun and Jee-Heon Jeong
36	Bioengineered Cell-Derived Vesicles as Drug Delivery Carriers 631 Vipul Gujrati and Sangyong Jon
37	Advanced Genetic Fusion Techniques for Improving the Pharmacokinetic Properties of Biologics 645 Seung R. Hwang and Jin W. Park
38	Mussel-Mimetic Biomaterials for Tissue Engineering Applications 655 Yun Kee Jo, Hyo Jeong Kim, Eun Yeong Jeon, Bong-Hyuk Choi, and Hyung Joon Cha
39	Mass Production of Full-Length IgG Monoclonal Antibodies from Mammalian, Yeast, and Bacterial Hosts 679 Sang T. Jung and Dong-Il Kim
40	Recent Advances in Mass Spectrometry-Based Proteomic Methods for Discovery of Protein Biomarkers for Complex Human Diseases 697 Sangchul Rho, Hyobin Jeong, Sehyun Chae, Hee-Jung Jung, Sanghyun Ahn, Yun-Hwa Kim, Ju-Young Lee, Soyoung Choi, and Daehee Hwang

Part VII	Computer-Aided Bioprocess Design and Systems
Biology	713

- 41 Overview on Bioprocess Simulation 715
 Shin Je Lee, Dae Shik Kim, Jong Min Lee and Chonghun Han
- **42 Bioprocess Simulation and Scheduling** 723

 Doug Carmichael, Charles Siletti, Alexandros Koulouris, and Demetri Petrides
- 43 Metabolism-Combined Growth Model Construction and Its Application to Optimal Bioreactor Operation 761

 Dong H. Jeong, Jung H. Kim, and Jong M. Lee
- Software Applications for Phenotype Analysis and Strain Design of Cellular Systems 771
 Meiyappan Lakshmanan, Lokanand Koduru, and Dong-Yup Lee
- Metabolic Network Modeling for Computer-Aided Design of Microbial Interactions 793
 Hyun-Seob Song, William C. Nelson, Joon-Yong Lee, Ronald C. Taylor, Christopher S. Henry, Alexander S. Beliaev, Doraiswami Ramkrishna, and Hans C. Bernstein

Index 803