Contents

1	Basic properties of lightweight carbon materials —— 1
1.1	Activated Carbon —— 1
1.1.1	Physical Structure and Classification —— 1
1.1.2	Chemical Properties and Functions —— 6
1.1.3	The Main Detection Indexes of the AC Properties — 9
1.1.4	The Use of Activated Carbon —— 11
1.2	Expanded Graphite —— 13
1.2.1	Brief Introduction to Graphite —— 14
1.2.2	Graphite Intercalation Compounds (GIC) —— 15
1.2.3	Expanded Graphite —— 16
1.2.4	Application of Expanded Graphite and Its Composites —— 17
1.3	Activated Carbon Fiber —— 19
1.3.1	Structure of the AC Fiber —— 20
1.3.2	Performance of the Activated Carbon Fiber —— 21
1.3.3	Application of the Activated Carbon Fiber —— 22
1.4	Carbon Nanotubes —— 24
1.4.1	Structure and Morphology of Carbon Nanotubes —— 25
1.4.2	Preparation of Carbon Nanotubes —— 26
1.4.3	Modification of Carbon Nanotubes —— 27
1.4.4	Application of Carbon Nanotubes —— 29
1.5	Graphene —— 32
1.5.1	Structure of Graphene —— 32
1.5.2	Preparation of GE —— 33
1.5.3	Performance and Application of Graphene —— 36
1.6	Adsorption Theory —— 39
1.6.1	The Mass Transfer Process of Adsorption —— 40
1.6.2	Physical Adsorption and Chemical Adsorption —— 41
1.6.3	Adsorption Isotherms —— 41
1.6.4	Factors Affecting the Adsorption —— 44
1.6.5	Adsorption Equilibrium and Kinetic Theory —— 45
	References —— 50
2	Preparation and properties test for lightweight carbon composite
	materials — 52
2.1	Preparation of Lightweight Carbon Composite Material —— 52
2.1.1	Direct Packing Method —— 52
2.1.2	Sol-Gel Method —— 54
2.1.3	Electroless Plating — 57
2.1.4	Precipitation Method —— 66
2.1.5	Micro-emulsion Method —— 67

2.1.6	Chemical Vapor Deposition —— 67
2.2	Characterization Technology of Composite Material —— 68
2.2.1	Electron Microscopy —— 68
2.2.2	Thermal Analysis Technology —— 70
2.2.3	Spectroscopic Technology —— 72
	References —— 74
3	Application of lightweight carbon material and its composite in national
	defense environmental protection —— 75
3.1	Disposal of Unsymmetrical Dimethylhydrazine Wastewater with
	TiO ₂ /porous Carbon and Its Composite Materials —— 75
3.1.1	Preparation of TiO ₂ /porous Carbon Composite
	Material —— 77
3.1.2	Preparation of the Composite Photocatalyst —— 78
3.1.3	Characterization of Composite Photocatalyst —— 79
3.1.4	UDMH Wastewater Disposal Effect —— 84
3.1.5	Analysis of Factors Affecting Disposal Effect of Composite
	Photocatalysts —— 87
3.1.6	Research on the Degradation Dynamic of UDMH —— 97
3.2	The Degradation of TNT by TiO_2/ACF Composite Photocatalyst —— 99
3.2.1	Preparation and Characterization of the Loaded Titanium
	Dioxide —— 102
3.2.2	The Influence Factors of the Degradation of Composite
	Photocatalyst on TNT Wastewater —— 103
3.2.3	The Function of Fenton Reagent for the Photocatalytic
	Degradation of TNT with ACF/TiO ₂ —— 108
3.2.4	The Photocatalytical Degradation of TNT Wastewater
	with the Modified ACF/TiO ₂ —— 111
3.3	The Study on the Decolorization and Adsorption of Printing and Dyeing
	Wastewater by the Expanded Graphite —— 116
3.3.1	Preparation of the Dye Standard Solution and the Expanded
	Graphite —— 118
3.3.2	The Decolorizing Effect of the Expanded Graphite —— 120
3.3.3	The Exploration of the Decolorizing Mechanism
	of the Expanded Graphite —— 131
3.3.4	The Fractal Analysis of the Adsorption of the Expanded
	Graphite for Dye —— 134
3.4	Study on the Adsorption Performance of the Unsymmetric Dimethyl
	Hydrazine (UDMH) with the Multi-Walled Carbon Nanotubes —— 138
3.4.1	The Adsorption Performance of Carbon Nanotubes
	on the Unsymmetric Dimethyl Hydrazine Solution —— 140
3.4.2	The Impact of the Carbon Nanotubes on the UDMH
	Adsorption —— 144

The Adsorption Performance of UDMH by the Modified Carbon Nanotubes —— 145
The Dynamic Adsorption and the Desorption Properties
of the Modified Multi-Walled Carbon Nanotubes on UDMH —— 156
Study on the Adsorption Performance of UDMH with Activated Carbon and Modified Activated Carbon —— 159
The Decoloring Efficiency of Different Types of Activated Carbon —— 160
Surface Modification of the Activated Carbon —— 161
The Adsorption Performance of the Modified Activated Carbon —— 164
The Adsorption Research of UDMH with the Activated Carbon Fiber (ACF) —— 173
The Determination of Adsorption Isotherm —— 173
The Calculation of Adsorption Thermodynamics Function —— 175
The Adsorption Law of UDMH with Activated Carbon Fiber —— 177 References —— 177
Application of lightweight carbon material and composite material in
electromagnetic wave absorbing material —— 180
Expanded Graphite/Fe/Co/Ni Composite Materials
and Their Absorbing Performance —— 182
Production of Expanded Graphite/Fe/Co/Ni Composite Materials —— 182
Characterization of Composite Materials —— 185
Electromagnetic Spectrum Analysis on Magnetic Metal-Expanded Graphite Composite —— 193
Expanded Graphite/Carbon Fiber/ Electroconductive and Magnetic-permeable Metal Composite Materials and Their Absorbing Performance —— 205
Fabrication of Expanded Graphite/Carbon Fiber/ Electroconductive and Magnetic-permeable Metal Composite Materials —— 206
Structure Characterization of Expanded Graphite/Carbon Fiber/Electroconductive and Magnetic-permeable Metal Composite Materials —— 207
Characterization of Ag/Magnetic Metal/EG Composite
Material's Magnetic Property —— 211
Electromagnetic Spectrum of Ag/Magnetic Metal/EG Composite Material —— 213

4.3	Chemical Plating Polyaniline/Expanded Graphite Metal Composite Materials and Their Absorbing Performance —— 221
4.3.1	Preparation of Polyaniline —— 222
4.3.2	Preparation of Polyaniline/Expanded Graphite Composite Materials —— 223
4.3.3	Structure and Performance Characterization of
	Polyaniline and Polyanilin/Expanded Graphite Composite
	Materials —— 223
4.3.4	Influencing Factors of Polyaniline Conductivity —— 226
4.3.5	Influencing Factors of the Conductivity of
	Polyaniline/Expanded Graphite Composite
	Materials — 229
4.3.6	Electromagnetic Spectrum of Series
	Metal/Polyaniline/Expanded Graphite Composite
	Materials —— 231
4.4	Absorbing Coating Preparation and Its Microwave Absorbing Properties —— 238
4.4.1	Preparation of Absorbing Coating Material —— 239
4.4.2	The Coating of Paint —— 241
4.4.3	Microwave Absorbing Performance of Composite Absorbing
71717	Coating — 242
4.5	Ultrathin Band-gap Absorbing Structure Based on Carbon Matrix Composite Material —— 244
4.5.1	Introduction EBG Structure and Its Application in Stealth
	Technology —— 244
4.5.2	Absorbing Theory of EBG Structure —— 247
4.5.3	Preparation of Carbon Matrix Composite Material —— 251
4.5.4	Composites of EBG Structure Design and Simulation — 267
4.6	Preparation of Carbon Nanotube/Transition Metal and Oxide Composite Materials —— 278
4.6.1	Preparation of Carbon Nanotube/ZnO Composites —— 279
4.6.2	Preparation of CNTs/Cu Composites —— 281
4.6.3	Preparation and Characterization of CNTs/TiO2 Composite
	Materials —— 283
4.7	Carbon Nanotubes/Magnetic Metal Composite Materials —— 284
4.7.1	Preparation of Laboratory Sample —— 284
4.7.2	Result Characterization —— 285
4.7.3	Optimization of Wave-Absorbing Performance —— 285
	References — 290

5	Application of lightweight carbon materials and composites in protective materials —— 294
5.1	Electromagnetic Pollution and Fabrics of Carbonaceous Electromagnetic Shielding —— 294
5.1.1	Generation and Hazard of Electromagnetic Pollution —— 294
5.1.2	Materials of Lightweight Carbonaceous Electromagnetic Shielding —— 295
5.1.3	Electromagnetic Shielding Mechanism of the Anti-
	Electromagnetic Radiation Materials —— 297
5.1.4	Types of Electromagnetic Fabrics —— 300
5.2	Study on the Preparation and Electromagnetic Shielding Performance of Carbon Fiber-Based Magnetic Composites —— 301
5.2.1	Technological Process of Plating Ni-Co-Fe-P —— 302
5.2.2	Solution of Ni/Co/Fe Chemical Plating —— 303
5.2.3	Characterization and Properties of Chemical Plating
	Ni-Co-Fe-P Alloy Coating on Carbon Fiber —— 304
5.2.4	Study on the Effect of RE Elements Ce and La on the Surface
	Modification of Carbon Fiber Electroless Plating —— 311
5.2.5	The Optimization of the Chemical Plating Technology
	of Ni-Fe-Co-P by BP Neural Network —— 322
5.3	Application of Light Carbon Materials in Liquid Propellant Protective Clothing Fabrics —— 328
5.3.1	Technique of Toxic Chemicals Proof —— 328
5.3.2	Research on Activated Carbon Fibers Affecting on UDMH
	Vapor Penetration Performance —— 330
5.3.3	Prediction of Antitoxin Time Based on the Artificial Neural Network Theory —— 335
5.3.4	The Regeneration of the Activated Carbon Fiber's Activity —— 337
5.3.5	New Liquid Propellant Protective Clothing Fabrics —— 339 References —— 341
6	Future development —— 345
6.1	Activated Technique and Modified Technique of Lightweight Carbon Materials —— 345
6.2	Composite Technology of Lightweight Carbon Materials —— 347
6.3	Develop New Lightweight Carbon Materials —— 347
6.4	Expand the Application of Lightweight Carbon Material —— 350 References —— 352