Contents

1	Intro	duction		1	
	1.1		Speed Railways in China	1	
		1.1.1	Development of High-Speed Railways	1	
		1.1.2	Development of High-Speed Railways in China	3	
	1.2	Overv	iew of HSR Bridges in China	10	
		1.2.1	Characteristics of HSR Bridges in China	10	
		1.2.2	Key Technologies of HSR Bridge Construction		
			in China	14	
		1.2.3	Common-Span HSR Bridges	17	
		1.2.4	Long-Span HSR Bridges	20	
		1.2.5	Application of Train-Bridge Dynamic Analysis		
			to HSR Design in China	20	
	1.3	Vibrat	ion Problems of Railway Bridges	24	
		1.3.1	Bridge Vibration Induced by Wind Load	25	
		1.3.2	Bridge Vibration Due to Earthquake Action	28	
		1.3.3	Bridge Vibration Induced by Collision of Vessels,		
			Vehicles, and Drifters	31	
		1.3.4	Bridge Vibration Induced by Crowd Load	37	
		1.3.5	Bridge Vibration Induced by Running Trains	39	
	1.4 Research History and Status Quo of Train-Bridge Couplin				
		Vibrat	ion: An Overview	41	
		1.4.1	Research on Vibration of Railway Bridges		
			Under Moving Train	41	
		1.4.2	Study on Dynamic Responses of Train-Bridge System		
			Under Wind Loads	51	
		1.4.3	Study on Dynamic Responses of Train-Bridge System		
			Subjected to Earthquake Action	55	
		1.4.4	Study on Dynamic Responses of Train-Bridge System		
			Subjected to Collision Load	58	
	1.5	Resear	ch Contents of Train-Bridge Coupling Vibrations	62	

x Contents

	1.6	Dynan	nic Analysis Methods of Train-Bridge System	67
		1.6.1	Dynamic Analysis Methods of Train-Bridge Coupling	
			System	68
		1.6.2	Motion Equation and Solution of Train-Bridge	
			System	70
	Refer	ences		73
2	Fund	lamenta	l Theories and Analytical Methods for Vibrations	
			ipported Beams Under Moving Loads	85
	2.1	Vibrati	ions of Simply-Supported Beam Under	
		Movin	g Loads	85
		2.1.1	Analysis Model	85
		2.1.2	Vibration of Simply-Supported Beam Under	
			a Moving Concentrated Load	89
		2.1.3	Displacement of Bridge Subjected	
			to a Moving Load Series	98
		2.1.4	Analytical Solution for Vibration of Simply-Supported	
			Beam Under a Moving Harmonic Load	101
	2.2	Vibrati	ion of Simply-Supported Beam Under Moving Loads	
		with V	Variable Speed	106
		2.2.1	Calculation Model	106
		2.2.2	Case Study	110
	2.3	Resona	ance Analysis of a Simply-Supported Beam Subjected	
			ving Loads	113
		2.3.1	Bridge Resonance Induced by a Moving	
			Load Series	114
		2.3.2	Resonance Analysis of Train Vehicles	125
	2.4	Vibrati	ion Suppression and Cancellation Analysis	
			in-Bridge System	126
		2.4.1	Resonance and Cancellation of Simply-Supported	
			Beam Under Moving Equidistant Load Series	127
		2.4.2	Resonance and Cancellation of Simply-Supported	
			Beam Under a Series of Train Loads	132
		2.4.3	Numerical Verification	136
	Refer	ences		145
3	Self-	excitatio	ons of Train-Bridge Coupling Vibration System	149
	3.1		Irregularities	149
	0.12	3.1.1	Definition of Track Irregularities	149
		3.1.2	Excitation Function of Track Irregularities	,
		3.1.2	in the Train-Bridge Vibration System	155
		3.1.3	Mathematical Description of Random Irregularity	100
		5.1.5	Characteristics	157
		3.1.4	Typical Track PSD	164
		3.1.5	Control Standards of Track Irregularities	172

Contents xi

		3.1.6 Numerical Simulation of Track Irregularities 1	174
	3.2		179
		3.2.1 Mechanism of Vehicle Hunting Movement	179
		3.2.2 Hunting Movements of Wheel-Set in Free	
		and Actual States	180
		3.2.3 Description of Wheel Hunting Movement	
		in Train-Bridge System	183
	3.3	AR Model Simulation of Random Excitations on Train-Bridge	
		System	184
		3.3.1 Measurement of Random Excitation	184
		3.3.2 AR Model Simulation of System Excitation	185
	Refer		188
4	Vibre	tion Criteria for HSR Bridges and Train Vehicles	
7		-	191
	4.1		192
	4.2		195
	7.2	The state of the s	195
			197
			198
			199
		4.2.5 Discussion About Sampling Frequency of Vehicle	. , ,
			199
	4.3		200
			200
			203
	4.4		205
			205
		· · · · · · · · · · · · · · · · · · ·	208
			212
			217
			219
			220
			221
	4.5	Conditions Unnecessary to Conduct Train-Bridge Coupling	
		Dynamic Analysis	222
	Refer	nces	225
5	Dyna	nic Analysis of Train-Bridge Coupling System	227
	5.1	, , , , , , , , , , , , , , , , , , , ,	227 227
	5.2		227 228
	٠.٢	3	228
			231
	5.3		233
	5.4		235 235

xii Contents

		5.4.1	Wheel-Rail Contact Geometry	236
		5.4.2	Normal Hertz Contact Theory	240
		5.4.3	Vertical Wheel-Rail Correspondence Assumption	241
		5.4.4	The Kalker's Linear Creep Theory and the Shen's	
			Correction	243
		5.4.5	The Simplified Kalker Linear Creep Theory	247
		5.4.6	Hunting Assumption	248
		5.4.7	Comparison of Various Wheel-Rail Relationship	
			Models	250
	5.5	Establi	ishment of Train-Bridge System Motion Equations	251
		5.5.1	Motion Equation of Vehicle Element	251
		5.5.2	Motion Equation of Train-Bridge Coupling System	259
	5.6	Solutio	on Methods for Train-Bridge Coupling System	260
		5.6.1	The Direct Coupling Iteration Method	260
		5.6.2	The In-Time-Step Iteration Method	264
		5.6.3	The Intersystem Iteration Method	265
	5.7	A Case	e Study	268
		5.7.1	Introduction to the Bridge	268
		5.7.2	Field Experiment	269
		5.7.3	Calculation Parameters of the Bridge	273
		5.7.4	Calculation Parameters of Vehicle	275
		5.7.5	Dynamic Responses of Bridge and Experimental	
			Verification	275
		5.7.6	Dynamic Responses of Vehicle	281
		5.7.7	Discussion on Iteration Convergence	285
		5.7.8	Vertical Resonance Analysis of Bridge Subsystem	286
	Refer			288
_				
6	-		alysis of Train-Bridge System Subjected	• • • •
			ds	291
	6.1		rical Simulation of Wind Loads	291
		6.1.1	Spectral Representation Method	292
		6.1.2	Linear Filtering Method	297
		6.1.3	Wavelet Simulation	300
		6.1.4	Wind Field Simulation	
			Based on Observed Records	302
	6.2		of Wind Barriers on Wind Flow Field	
		Around	d Bridge	304
		6.2.1	Types of Wind Barriers	305
		6.2.2	Aerodynamic Optimization of Wind Barriers	
			Based on CFD Theory	306
		6.2.3	Aerodynamic Performance of Train-Bridge System	
			Under Crosswinds and Windproof Effect of Wind	
			Barriers	322

Contents xiii

	6.3		Dynamic Model of Train-Bridge System Subjected		
		to Cro	sswinds	326	
		6.3.1	Wind Forces on Vehicle-Bridge System	327	
		6.3.2	Motion Equations of Coupled Train-Bridge System		
			Subjected to Crosswinds	332	
	6.4	Dynan	nic Analysis of a Train and Long-Span Bridge System		
		Under	Crosswinds	333	
		6.4.1	Engineering Background	333	
		6.4.2	Wind and Structural Health Monitoring System		
			(WASHMS) on the Bridge	335	
		6.4.3	Case Identification of Train Loads	336	
		6.4.4	Numerical Simulation and Analysis	337	
	6.5	Dynan	nic Analysis of Wind-Train-Bridge System Considering		
			ynamic Effects of Wind Barriers	341	
		6.5.1	Engineering Background	341	
		6.5.2	Input Data	342	
		6.5.3	Bridge Responses	345	
		6.5.4	Vehicle Responses	346	
	Refe		·····	347	
_					
7			alysis of Train-Bridge System Subjected		
			ke Action	351	
	7.1		action	351	
	7.2		rical Simulation of Seismic Ground Motion	352	
		7.2.1	Spatial Variation of Seismic Ground Motion	352	
		7.2.2	Simulation of Seismic Ground Motion Considering		
			Spatial Variation	354	
		7.2.3	Consistency Treatment of Earthquake Record	366	
	7.3 Dynamic Analysis of Structures Subjected to Seismic		· · · · · · · · · · · · · · · · · · ·		
			1	371	
		7.3.1	Single-Degree-of-Freedom Model (SDOF Model)	372	
		7.3.2	Multi-Degree-of-Freedom Model (MDOF Model)	373	
	7.4	•	nic Analysis Model of Train-Bridge System Subjected		
			hquake Action	380	
		7.4.1	Simplified Analysis Model	380	
		7.4.2	Vibration Analysis of WSM Units Running		
			on a Simply-Supported Beam Subjected		
			to Multi-support Seismic Excitations	382	
		7.4.3	MDOF Train-Bridge Coupling Model	391	
	7.5	Runnir	ng Safety of Train on Bridge During Earthquakes	395	
		7.5.1	Evaluation Indices for Running Safety of Train		
			During Earthquakes	395	
		7.5.2	Procedures of Train Running Safety Evaluation		
			During Earthquakes	397	

xiv Contents

	7.6		Study	398		
		7.6.1	Calculation Parameters	398		
		7.6.2	Calculation Results and Discussion	400		
		7.6.3	Main Conclusions	407		
	Refe	rences		408		
8	Dyna	amic An	alysis of Train-Bridge System Subjected			
_			Loads	411		
	8.1		on Loads	411		
		8.1.1	Collision by Vessels	412		
		8.1.2	Collision by Road Vehicles	420		
		8.1.3	•	426		
		8.1.4	Characteristics of Bridge Collision Loads	431		
	8.2		nic Analysis Model of Train-Bridge System Subjected			
			lision Loads	432		
	8.3		nic Analysis of Train-Bridge System Subjected			
			lision Loads	436		
		8.3.1	Bridge Description and Calculation Parameters	436		
		8.3.2	Dynamic Responses of the Bridge			
		8.3.3	Dynamic Responses of the Train			
	8.4	Influen	ce of Collision Effect on Running Safety			
			h-Speed Train	450		
		8.4.1	Influence of Train Speed	451		
		8.4.2	Influence of Collision Load Intensity	451		
		8.4.3		453		
		8.4.4	Influence of Impulse Form and Duration			
			of Collision Loads	457		
	8.5	A Fran	nework for Running Safety Assessment of High-Speed			
			on Bridge Subjected to Collision Loads	459		
		8.5.1	Analysis Method	459		
		8.5.2	Threshold Curves for Running Safety of ICE3 Train			
			on the Bridge Subjected to Ice-I Collision Load	460		
		8.5.3	Comparison of Running Safety Thresholds			
			for Different Collision Loads	463		
		8.5.4	Comparison of Running Safety Thresholds			
			for Different Trains	464		
	8.6	Conclu	sions	466		
	Refe			467		
Λ						
9			alysis of Train-Bridge System Under Differential nd Scouring Effect of Foundations	471		
	9.1			471 471		
	9.1	Differential Settlement of Bridge Foundations				
	7.4		Cyclic Train Loading	474		
			Determination of Stress State in the Subsoil	4/4		

Contents xv

		9.2.2	Calculation of Cumulative Pore Pressure	477
		9.2.3	Calculation of Additional Settlement of Bridge	
			Foundation Under Train Loads	478
		9.2.4	Case Study	479
	9.3	Numer	ical Analysis of Differential Settlement of a Bridge	
			ation Caused by Adjacent Foundation Construction	487
		9.3.1	Engineering Background	487
		9.3.2	Finite Element Modeling	488
		9.3.3	Division of Construction Stages	491
		9.3.4	Displacements of Existing Piles	
			After the Construction of New Group-Piles	492
		9.3.5	Displacements of Existing Pile Foundation	
		,	After the Pit Excavation of New Platform	494
		9.3.6	Displacements of Existing Pile Foundation	.,,
		7.5.0	After the Concrete Cast of New Platform	495
		9.3.7	Displacements of Existing Pier and Platform When	773
		7.5.1	the New Bridge Pier Is Loaded by Superstructure	
			Loads	495
	9.4	Influen	ce of Differential Settlement of Bridge Foundation	493
	J. T		namic Responses of Train-Bridge System	497
		9.4.1	Simulation of Additional Track Unevenness Induced	471
		7. 4 .1	by Differential Settlement of Bridge Foundation	498
		9.4.2	Dynamic Response Analysis of the Train	500
		9.4.2	Dynamic Response Analysis of the Bridge	506
	9.5		• • •	300
	9.3		ce of Pier Foundation Scouring on Running Safety	508
		9.5.1	n-Speed Trains	508
		9.5.1	•	
			Scouring Mechanism	510
		9.5.3	Calculation of Scouring Depth	511
		9.5.4	Effect of Scouring on Equivalent Stiffness	~ 10
		0.5.5	of Group-Piles	513
		9.5.5	Dynamic Analysis Method for Train-Bridge System	50 0
		0.5.6	Considering Foundation Scouring Effect	520
		9.5.6	Effect of foundation scouring on equivalent stiffness	
			of group-piles	522
		9.5.7	Effect of foundation scouring on dynamic responses	
			of train-bridge system	526
	Refer	ences		534
10	Dvna	mic Ana	alysis of Train-Bridge System Under Beam	
			Induced by Concrete Creep	
			ature Effect	537
	10.1	-	ction	537
	10.2 Influence of PC Beam Creep Camber on Dynamic			
	10.2		uses of Train-Bridge System	538
		respon	See of Train Directory Seems	220

xvi Contents

	10.2.1	Creep Camber of PC Beams	538		
	10.2.2	Experimental Investigation on PC Beam Creep			
		Camber and Additional Track Unevenness	542		
	10.2.3	Analysis of Additional Track Unevenness			
		Induced by PC Beam Creep Camber	545		
	10.2.4	Simulation of Additional Track Unevenness			
		Caused by Beam Creep Camber	553		
	10.2.5	Influence of Beam Creep on Dynamic Responses			
		of Train-Bridge System	556		
10.3	Influence of Temperature Deformation on Dynamic				
	Respon	ses of Train-Bridge System	566		
	10.3.1	Temperature Deformations of Bridge	566		
	10.3.2	Numerical Simulation for Sidewise Bending			
		of Beam	568		
	10.3.3	Temperature Warping Deformation of Track Slab			
		and Its Effect on Dynamic Responses			
		of Train-Track System	569		
Refer	ences.		578		