Contents

1	Introduction				
	1.1	.1 Motivation			
	1.2	Lakes on Earth	10		
	1.3	Lakes Characterised by Their Response to the Driving			
	Environment				
		1.3.1 Seasonal Characteristics	14		
		1.3.2 Characteristics by Mixing	15		
		1.3.3 Boundary-Related Processes	18		
		1.3.4 Characterisation by Typical Scales	20		
	Refe	rences	22		
•	B.C. 41	Lange Carl Thomas and Man	26		
2		.	25		
	2.1		26		
	2.2		38		
	2.3		41		
	2.4	, E	50		
	2.5	U	60		
			60		
			62		
	Refer	rences	65		
3	A Br	rief Review of the Basic Thermomechanical			
	Laws of Classical Physics				
	3.1 Underlying Fundamentals – General Balance Laws				
	3.2 Physical Balance Laws		73		
		3.2.1 Balance of Mass	73		
		3.2.2 Balance of Linear Momentum	74		
			76		
			77		
			79		
	Refer		82		

xxxv

xxxvi Contents

4	Fund	lamental	l Equations of Lake Hydrodynamics	83		
	4.1	Kinema	atics	84		
	4.2	Balance	e of Mass	100		
	4.3					
		Concer	ot of Stress, Hydrostatics	110		
		4.3.1	Stress Tensor	113		
		4.3.2	Local Balance Law of Momentum or Newton's			
			Second Law	118		
		4.3.3	Material Behaviour	123		
		4.3.4	Hydrostatics	128		
	4.4	Balanc	e of Energy: First Law of Thermodynamics	136		
	4.5	Diffusion of Suspended Substances				
	4.6	Summary of Equations1				
	4.7	A First	Look at the Boussinesq and Shallow-Water Equations.	150		
	Refer					
5	Cons	ervation	of Angular Momentum-Vorticity	157		
	5.1		ation			
	5.2		Vorticity Theorems			
	5.3	Helmh	oltz Vorticity Theorem	170		
	5.4	Potenti	al Vorticity Theorem	177		
	References					
6	6					
	6.1	A Prim	ner on Turbulent Motions	185		
		6.1.1	Averages and Fluctuations	185		
		6.1.2	Filters	187		
		6.1.3	Isotropic Turbulence	190		
		6.1.4	REYNOLDS Versus FAVRE Averages	192		
	6.2	Balanc	e Equations for the Averaged Fields	194		
		6.2.1	Motivation	194		
		6.2.2	Averaging Procedure	195		
		6.2.3	Averaged Density Field $\langle \rho \rangle$	197		
		6.2.4	Dissipation Rate Density $\langle \phi \rangle$	198		
		6.2.5	Reynolds Stress Hypothesis	198		
		6.2.6	One- and Two-Equation Models	201		
	6.3	<i>k</i> –ε M	odel for Density-Preserving and Boussinesq Fluids			
		6.3.1	The Balance Equations			
		6.3.2	Closure Relations	204		
		6.3.3	Summary of $(k - \varepsilon)$ -Equations	206		
		6.3.4	Boundary Conditions	207		
	6.4	Final R	Remarks			
		641	Higher Order RANS Models	210		

Contents xxxvii

		6.4.2	Large Eddy Simulation and Direct Numerical	211			
		6.4.3	Simulation Early Anisotropic Closure Schemes	. 211			
	Dofo		· · · · · · · · · · · · · · · · · · ·				
	Kele	rences	• • • • • • • • • • • • • • • • • • • •	. 219			
_	T. 4	1 4	4 T 1 TT				
7			to Linear Waves				
	7.1		near Wave Equation and Its Properties				
	7.2		Gravity Waves Without Rotation				
		7.2.1	Short-Wave Approximation				
		7.2.2	Long-Wave Approximation				
		7.2.3	Standing Waves – Reflection	. 247			
	7.3	Free Lii	near Oscillations in Rectangular Basins	252			
		of Cons	stant Depth	. 252			
	7.4		ding Remarks				
	Refe	rences		. 261			
_							
8			ne Distribution of Mass Within Water Bodies on Earth				
	8.1		ion				
	8.2		es of Surface Water Penetration to Depth				
	8.3	_	enisation of Water Masses Requires Energy				
		8.3.1	Constant Density Layers				
		8.3.2	Continuous Density Variation				
		8.3.3	Influence of the Thermal Expansion				
	8.4		of Buoyant Bodies in a Stratified Still Lake				
		8.4.1	Influence of Friction	. 290			
	8.5		Oscillations – The Dynamical Imprint				
			Density Structure	. 294			
		8.5.1	Fundamental Equations	. 297			
		8.5.2	Eigenvalue Problem for the Vertical Mode Structure				
			in Constant Depth Basins				
	8.6						
	Refe	rences		. 317			
)			ture of Wind-Induced Currents				
	in Homogeneous and Stratified Waters						
	9.1		and Scope of This Chapter	. 319			
	9.2						
	Under Steady Wind						
		9.2.1	Wind-Induced Steady Circulation in a Narrow				
			Homogeneous Lake of Constant Depth	. 322			
		9.2.2	Influence of Bottom Slip on the Wind-Induced				
			Circulation	. 328			
		9.2.3	Wind-Induced Steady Circulation in a Narrow Lake				
			Stratified in Two Layers	. 330			

xxxviii Contents

	9.3	Ekman	Theory and Some of Its Extensions	340			
		9.3.1	Ekman Spiral				
		9.3.2	Steady Wind-Induced Circulation in a Homogeneous				
			Lake on the Rotating Earth	. 358			
		9.3.3	Wind-Driven Steady Currents in Lake Erie				
		9.3.4	Time-Dependent Wind-Induced Currents in Shallow				
			Lakes on the Rotating Earth	. 369			
		9.3.5	The Dynamical Prediction of Wind Tides on Lake Erie.				
	9.4	Final R	emarks				
	Refer	ences	• • • • • • • • • • • • • • • • • • • •	385			
10	Phen	omenolo	gical Coefficients of Water	389			
	10.1		of Water				
		10.1.1	Natural Water and Sea Water	393			
		10.1.2	Suspended Matter				
	10.2	Specific	Heat of Water				
		10.2.1	Specific Heat of Salty Water				
	10.3	Viscosi	ty of Water				
		10.3.1	Pure Water				
		10.3.2	Sea Water				
		10.3.3	Natural Water	409			
		10.3.4	Suspended Matter				
	10.4 Mole		lar Heat Conductivity of Water				
		10.4.1	Heat Conductivity of Salt Water				
		10.4.2	Impurities				
	References		416				
Na	me Ind	lev		419			
1 108	III			,,,			
Lal	ke Ind	ex		423			
Sul	Subject Index425						