Contents

Preface — ix

1	Maxwell's Equations —— 1
1.1	Coulomb's and Gauss' Law —— 2
1.2	Faraday's Law —— 4
1.3	Ampere-Maxwell Law —— 5
1.4	Electromagnetic Waves in Free Space —— 6
1.5	Electromagnetic Waves in Matter — 9
1.6	Snell's Law and Evanescent Waves —— 13
1.7	Group and Phase Velocity —— 17
1.8	Waveguides —— 19
2	Electromagnetic Properties of Metals —— 25
2.1	Origin of Permittivity —— 25
2.2	Permittivity and Conductivity of Conductors — 27
2.3	Electromagnetic Waves in a Conductor —— 29
3	Plasma Kinetic Theory —— 33
3.1	Introduction —— 33
3.2	Exact Solutions for Time-Independent Electric Fields —— 35
3.3	Linear Response Theory (Plasma Waves) —— 37
3.4	Ponderomotive Theory —— 39
3.5	$\vec{E} \times \vec{B}$ Drift —— 43
4	Plasma Fluid Theory —— 45
4.1	Introduction —— 45
4.2	Derivation of the Fluid Equations —— 45
4.3	Electrostatic Wave —— 48
4.4	Plasma Conductivity and Permittivity —— 50
4.5	Electromagnetic Waves —— 51
5	Surface Plasmon Polaritons (SPP) —— 55
5.1	SPP on Single Interface —— 56
5.1.1	TE Mode of SPP —— 57
5.1.2	TM Mode of SPP —— 58

5.2	SPP on Multilayer Systems —— 60
5.3	Excitation of SPP —— 62
5.4	Localized Surface Plasmon Resonance (LSPR) —— 65
5 . 5	Aplications of Surface Plasmons —— 69
6	Spoof Surface Plasmons (SSP) —— 71
6.1	SSP at Low Frequencies —— 71
6.2	SSP at High Frequencies — 73
6.3	Self-collimation in SSP —— 77
7	Advanced Topics in Plasmonics —— 83
7.1	Negative Index Metamaterials (NIMs) —— 83
7.2	Surface-Enhanced Raman Scattering (SERS) —— 88
7.3	Particle Traps —— 90
8	Mathematical Foundations —— 99
8.1	Scalars and Vectors —— 99
8.1.1	Coordinate Systems: Cartesian, Cylindrical and Spherical —— 99
8.1.2	Gradient of a Scalar —— 104
8.1.3	Divergence and Curl of a Vector — 105
8.1.4	Scalar and Vector Integration —— 107
8.1.5	Vector Identities —— 110
8.1.6	Scalar and Vector Potential —— 111
8.2	Lorentz Transformations and Special Relativity —— 113
8.3	LTI Systems and Green's Function —— 117
8.4	Fourier Transform —— 121
8.5	Linear Stability Analysis of ODEs —— 125
8.6	Hamiltonian Formulation of Charged Particle Dynamics —— 134
9	Numerical Methods for Electromagnetics —— 139
9.1	Laplace Equation —— 139
9.2	Runge-Kutta Method —— 141
9.3	Wave Equation: FDTD Method —— 144
9.4	FDTD Dispersion Relation —— 146
9.5	Dispersive Materials —— 148
Append	lix: Legendre Polynomials —— 153
Bibliog	raphy —— 155
Index -	— 157