Contents

Preface xiii		
List of Co	ntributors	x_1

Part I Introduction 1

1 Introduction to Reactive Extrusion 3
Christian Hopmann, Maximilian Adamy, and Andreas Cohnen
References 9

The Co-rotating Twin-Screw Extruder for Reactive

Part II Introduction to Twin-Screw Extruder for Reactive Extrusion 11

	Extrusion 13
	Frank Lechner
2.1	Introduction 13
2.2	Development and Key Figures of the Co-rotating Twin-Screw
	Extruder 14
2.3	Screw Elements 16
2.4	Co-rotating Twin-Screw Extruder – Unit Operations 22
2.4.1	Feeding 23
2.4.2	Upstream Feeding 23
2.4.3	Downstream Feeding 24
2.4.4	Melting Mechanisms 24
2.4.5	Thermal Energy Transfer 24
2.4.6	Mechanical Energy Transfer 25
2.4.7	Mixing Mechanisms 25
2.4.8	Devolatilization/Degassing 25
2.4.9	Discharge 26
2.5	Suitability of Twin-Screw Extruders for Chemical Reactions 26
2.6	Processing of TPE-V 27
2.7	Polymerization of Thermoplastic Polyurethane (TPU) 29

2

vi	Contents	
	2.8	Grafting of Maleic Anhydride on Polyolefines 31
	2.9	Partial Glycolysis of PET 32
	2.10	Peroxide Break-Down of Polypropylene 33
	2.11	Summary 35
		References 35
		Part III Simulation and Modeling 37
		3
	3	Modeling of Twin Screw Reactive Extrusion: Challenges and
		Applications 39
		Françoise Berzin and Bruno Vergnes
	3.1	Introduction 39
	3.1.1	Presentation of the Reactive Extrusion Process 39
	3.1.2	Examples of Industrial Applications 40
	3.1.3	Interest of Reactive Extrusion Process Modeling 41
	3.2	Principles and Challenges of the Modeling 41
	3.2.1	Twin Screw Flow Module 42
	3.2.2	Kinetic Equations 44
	3.2.3	Rheokinetic Model 44
	3.2.4	Coupling 45
	3.2.5 3.3	Open Problems and Remaining Challenges 45
	3.3.1	Examples of Modeling 46 Esterification of EVA Copolymer 46
	3.3.2	Controlled Degradation of Polypropylene 50
	3.3.3	Polymerization of ε -Caprolactone 55
	3.3.4	Starch Cationization 59
	3.3.5	Optimization and Scale-up 61
	3.4	Conclusion 65
	0.1	References 66
	4	Measurement and Modeling of Local Residence Time
		Distributions in a Twin-Screw Extruder 71
		Xian-Ming Zhang, Lian-Fang Feng, and Guo-Hua Hu
	4.1	Introduction 71
	4.2	Measurement of the Global and Local RTD 72
	4.2.1	Theory of RTD 72
	4.2.2	In-line RTD Measuring System 73
	4.2.3	Extruder and Screw Configurations 75
	4.2.4	Performance of the In-line RTD Measuring System 76
	4.2.5	Effects of Screw Speed and Feed Rate on RTD 77
	4.2.6	Assessment of the Local RTD in the Kneading Disk Zone 79
	4.3	Residence Time, Residence Revolution, and Residence Volume

Distributions 81

Partial RTD, RRD, and RVD 82

Local RTD, RRD, and RVD 86

4.3.1

4.3.2

4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.5	Modeling of Local Residence Time Distributions 88 Kinematic Modeling of Distributive Mixing 88 Numerical Simulation 89 Experimental Validation 92 Distributive Mixing Performance and Efficiency 93 Summary 97 References 98
5	In-process Measurements for Reactive Extrusion Monitoring and Control 101 José A. Covas
5.1	Introduction 101
5.2	Requirements of In-process Monitoring of Reactive Extrusion 103
5.3	In-process Optical Spectroscopy 111
5.4	In-process Rheometry 116
5.5	Conclusions 125
	Acknowledgment 126
	References 126
	Part IV Synthesis Concepts 133
6	Exchange Reaction Mechanisms in the Reactive Extrusion of Condensation Polymers 135 Concetto Puglisi and Filippo Samperi
6.1	Introduction 135
6.2	Interchange Reaction in Polyester/Polyester Blends 138
6.3	Interchange Reaction in Polycarbonate/Polyester Blends 143
6.4	Interchange Reaction in Polyester/Polyamide Blends 148
6.5	Interchange Reaction in Polycarbonate/Polyamide Blends 155
6.6	Interchange Reaction in Polyamide/Polyamide Blends 159
6.7	Conclusions 166
0.7	References 167
7	<i>In situ</i> Synthesis of Inorganic and/or Organic Phases in
	Thermoplastic Polymers by Reactive Extrusion 179
	Véronique Bounor-Legaré, Françoise Fenouillot, and Philippe Cassagnau
7.1	Introduction 179
7.2	Nanocomposites 179
7.2.1	Synthesis of in situ Nanocomposites 181
7.2.2	Some Specific Applications 183
7.2.2.1	Antibacterial Properties of PP/TiO ₂ Nanocomposites 183
7.2.2.2	
7.2.2.2 7.2.2.3	Flame-Retardant Properties 184
	Flame-Retardant Properties 184 Protonic Conductivity 186
7.2.2.3	Flame-Retardant Properties 184

7.4	Polymerization of a Thermoset Minor Phase Under Shear 196
7.4.1	Thermoplastic Polymer/Epoxy-Amine Miscible Blends 197
7.4.2	Examples of Stabilization of Thermoplastic Polymer/Epoxy-Amine
	Blends 202
7.4.3	Blends of Thermoplastic Polymer with Monomers Crosslinking via
	Radical Polymerization 202
7.5	Conclusion 203
	References 204
8	Concept of (Reactive) Compatibilizer-Tracer for Emulsification
	Curve Build-up, Compatibilizer Selection, and Process
	Optimization of Immiscible Polymer Blends 209
	Cai-Liang Zhang, Wei-Yun Ji, Lian-Fang Feng, and Guo-Hua Hu
8.1	Introduction 209
8.2	Emulsification Curves of Immiscible Polymer Blends in a Batch
0.2	Mixer 210
8.3	Emulsification Curves of Immiscible Polymer Blends in a Twin-Screw
0.0	Extruder Using the Concept of (Reactive) Compatibilizer 213
8.3.1	Synthesis of (Reactive) Compatibilizer-Tracers 213
8.3.2	Development of an In-line Fluorescence Measuring Device 214
8.3.3	Experimental Procedure for Emulsification Curve Build-up 216
8.3.4	Compatibilizer Selection Using the Concept of
0.5.4	Compatibilizer-Tracer 219
8.3.5	Process Optimization Using the Concept of
0.5.5	Compatibilizer-Tracer 220
8.3.5.1	Effect of Screw Speed 220
8.3.5.2	Effects of the Type of Mixer 221
8.3.6	Section Summary 221
8.4	Emulsification Curves of Reactive Immiscible Polymer Blends in a
0.1	Twin-Screw Exturder 222
8.4.1	Reaction Kinetics between Reactive Functional Groups 222
8.4.2	(Non-reactive) Compatibilizers Versus Reactive Compatibilizers 223
8.4.3	An Example of Reactive Compatibilizer-Tracer 224
8.4.4	Assessment of the Morphology Development of Reactive Immiscible
0.1.1	Polymer Blends Using the Concept of Reactive Compatibilizer 225
8.4.5	Emulsification Curve Build-up in a Twin-Screw Extruder Using the
3, 2, 5	Concept of Reactive Compatibilizer-Tracer 229
8.4.6	Assessment of the Effects of Processing Parameters Using the Concept
	of Reactive Compatibilizer-Tracer 233
8.4.6.1	Effect of the Reactive Compatibilizer-Tracer Injection Location 233
8.4.6.2	Effect of the Blend Composition 235
8.4.6.3	Effect of the Geometry of Screw Elements 238
8.5	Conclusion 241
	References 241
	·

Part V Selected Examples of Synthesis 245

9	Nano-structuring of Polymer Blends by <i>in situ</i> Polymerization
	and in situ Compatibilization Processes 247
	Cai-Liang Zhang, Lian-Fang Feng, and Guo-Hua Hu
9.1	Introduction 247
9.2	Morphology Development of Classical Immiscible Polymer Blending
	Processes 248
9.2.1	Solid-Liquid Transition Stage 249
9.2.2	Melt Flow Stage 251
9.2.3	Effect of Compatibilizer 253
9.3	In situ Polymerization and in situ Compatibilization of Polymer
	Blends 255
9.3.1	Principles 255
9.3.2	Classical Polymer Blending Versus in situ Polymerization
	and in situ Compatibilization 255
9.3.3	Examples of Nano-structured Polymer Blends by <i>in situ</i>
	Polymerization and <i>in situ</i> Compatibilization 257
9.3.3.1	PP/PA6 Nano-blends 257
9.3.3.2	PPO/PA6 Nano-blends 264
9.3.3.3	PA6/Core–Shell Blends 264
9.4	Summary 267
	References 268
10	Reactive Comb Compatibilizers for Immiscible Polymer
10	Blends 271
	Yongjin Li, Wenyong Dong, and Hengti Wang
10.1	Introduction 271
10.1	Synthesis of Reactive Comb Polymers 272
10.2	Reactive Compatibilization of Immiscible Polymer Blends by Reactive
10.5	Comb Polymers 274
10.3.1	PLLA/PVDF Blends Compatibilized by Reactive Comb
10.5.1	Polymers 274
10211	Comparison of the Compatibilization Efficiency of Reactive Linear
10.5.1.1	and Reactive Comb Polymers 274
10312	Effects of the Molecular Structures on the Compatibilization
10.5.1.2	Efficiency of Reactive Comb Polymers 278
10.3.2	PLLA/ABS Blends Compatibilized by Reactive Comb
10.5.2	Polymers 282
10.4	Immiscible Polymer Blends Compatiblized by Janus
10.7	Nanomicelles 289
10.5	Conclusions and Further Remarks 293
10.0	References 293
	NCICICIECS 2/3

x	Contents	
	11	Reactive Compounding of Highly Filled Flame Retardant Wire
		and Cable Compounds 299
		Mario Neuenhaus and Andreas Niklaus
	11.1	Introduction 299
	11.2	Formulations and Ingredients 300
	11.2.1	Typical Formulation and Variations for the Evaluation 300
	11.2.2	Principle of Silane Crosslinking by Reactive Extrusion 301
	11.2.3	Production of Aluminum Trihydroxide (ATH) 301
	11.2.4	Mode of Action of Aluminum Trihydroxide 302
	11.2.5	Selection of Suitable ATH Grades 303
	11.3	Processing 306
	11.3.1	Compounding Line 306
	11.3.2	Compounding Process for Cross Linkable HFFR
		Products 308
		Two-Step Compounding Process 308
		One-Step Compounding Process 309
	11.3.2.3	Advantages and Disadvantages of the Two Process Concepts
		(Two-Step vs One-Step) 313
	11.4	Evaluation and Results on the Compound 314
	11.4.1	Crosslinking Density 314
	11.4.2	Mechanical Properties 315
	11.4.3	Aging Performance 315
	11.4.4	Fire Performance on Laboratory Scale 317
	11.4.5	Results of the Non-Polar Compounds 318
	11.5	Cable Trials 322
	11.5.1	Fire Performance of Electrical Cables According
	11 5 2	to EN 50399 322
	11.5.2	Burning Test on Experimental Cables According
	11.6	to EN 50399 323 Conclusions 328
	11.0	References 329
		Keierences 329
	12	Thermoplastic Vulcanizates (TPVs) by the Dynamic
		Vulcanization of Miscible or Highly Compatible Plastic/Rubber
		Blends 331
		Yongjin Li and Yanchun Tang
		- •

- Introduction 331 12.1
- Morphological Development of TPVs from Immiscible Polymer 12.2 Blends 333
- 12.3 TPVs from Miscible PVDF/ACM Blends 334
- TPVs from Highly Compatible EVA/EVM Blends 338 12.4
- 12.5 Conclusions and Future Remarks 342 References 342

Part VI Selected Examples of Processing 345

13	Reactive Extrusion of Polyamide 6 with Integrated Multiple Melt Degassing 347
10.1	Christian Hopmann, Eike Klünker, Andreas Cohnen, and Maximilian Adamy
13.1	Introduction 347
13.2	Synthesis of Polyamide 6 347
13.2.1	Hydrolytic Polymerization of Polyamide 6 347
13.2.2	Anionic Polymerization of Polyamide 6 348
13.3	Review of Reactive Extrusion of Polyamide 6 in Twin-Screw Extruders 352
13.4	Recent Developments in Reactive Extrusion of Polyamide 6 in Twin-Screw Extruders 354
13.4.1	Reaction System and Experimental Setup 354
13.4.2	Influence of Number of Degassing Steps and Activator Content on Residual Monomer Content and Molecular Weight 356
13.4.3	Influence of Amount and Type of Entrainer on Residual Monomer Content and Molecular Weight 365
13.4.4	Influence of Polymer Throughput on Residual Monomer Content 362
13.5	Conclusion 368
10.0	References 369
14	Industrial Production and Use of Grafted Polyolefins 375 Inno Rapthel, Jochen Wilms, and Frederik Piestert
14.1	Grafted Polymers 375
14.2	Industrial Synthesis of Grafted Polymers 376
14.2.1	Melt Grafting Technology 377
14.2.2	Solid State Grafting Technology 378
14.3	Main Applications 380
14.3.1	Use as Coupling Agents 380
14.3.2	Grafted Polyolefins for Polymer Blending 392
	Reactive Blending of Polyamides 392
14.3.3	Grafted TPE's for Overmolding Applications 400
14.4	Conclusion and Outlook 403
_ •• •	References 404

Index 407