Contents

Preface --- VII

Bas	ic	no	tat	ion		XI
-----	----	----	-----	-----	--	----

1	Introduction —— 1
2	Generalized formulations of parabolic and hyperbolic problems —— 9
2.1	Finite-dimensional mechanical systems —— 9
2.1.1	Forced motions of a mechanical system with elastic elements —— 10
2.1.2	Variational statement of mechanical problems —— 11
2.1.3	Relation with conventional variational principles —— 13
2.2	Longitudinal motions of elastic rods —— 15
2.2.1	Equations of rod dynamics —— 16
2.2.2	Variational statement of the IBVP —— 17
2.3	Membrane vibrations and acoustic waves —— 20
2.3.1	Classical statement —— 21
2.3.2	Weakened formulation relying on the MIDR —— 23
2.3.3	Conditions of stationarity —— 24
2.4	Heat transfer in solids —— 25
2.4.1	Equations in linear thermodynamics —— 26
2.4.2	Generalized formulation based on the MIDR —— 26
2.4.3	Variational properties of the minimization problem —— 28
3	Variational principles in linear elasticity —— 31
3.1	Dynamics of elastic bodies —— 31
3.1.1	Problems of elastodynamics —— 31
3.1.2	Hamilton principles —— 33
3.1.3	Integrodifferential statement in elasticity —— 35
3.1.4	A family of constitutive functionals —— 36
3.1.5	Comparative analysis of variational problems —— 38
3.1.6	Dynamic variational principle in displacements and stresses —— 41
3.2	Spectral problems in elasticity —— 43
3.2.1	Harmonic vibrations of elastic bodies —— 43
3.2.2	Natural vibrations of solids —— 45
3.2.3	Variational statements of harmonic problems —— 45
3.3	Variational formulations in elastostatics —— 47
3.3.1	Static problems in linear elasticity —— 47
3.3.2	Relationship of static variational principles —— 48
3.3.3	Bilateral energy estimates —— 50

4	Variational statements in structural mechanics — 53
4.1	Lateral motions of elastic beams —— 53
4.1.1	Dynamic equations for beam bending —— 53
4.1.2	Complementary Hamilton principles —— 55
4.1.3	Method of integrodifferential relations in beam theory —— 57
4.1.4	Energy estimates of solution quality —— 58
4.1.5	A family of variational problems —— 59
4.1.6	Comparison of variational formulations —— 62
4.2	Longitudinal motions of viscoelastic rods —— 64
4.2.1	Models of deformation with viscosity and rheology —— 64
4.2.2	Minimization with integral constitutive relations —— 65
4.3	Structures with lumped and distributed parameters — 67
4.3.1	Motions of a rod weighted at the ends —— 67
4.3.2	Variational statement for hybrid system dynamics —— 69
5	Ritz method for initial-boundary value problems —— 71
5.1	Finite-dimensional dynamic problems —— 71
5.1.1	Chain of linear oscillators —— 71
5.1.2	Polynomial approximation of time functions —— 72
5.2	Bivariate polynomials in rod and beam modeling —— 74
5.2.1	Longitudinal motions of an elastic homogeneous rod —— 74
5.2.2	Conventional Galerkin method —— 77
5.2.3	Ritz method and the MIDR —— 78
5.2.4	Lateral elastic displacements —— 83
5.2.5	Numerical simulation of beam bending —— 85
5.3	FEM modeling of elastic rod dynamics —— 88
5.3.1	Modified minimization problem —— 88
5.3.2	Piecewise polynomial approximations —— 89
5.3.3	Continuity of kinematic and dynamic fields —— 93
5.3.4	Constitutive relations in the FEM —— 97
5.4	Spline representation of elastic body motions —— 101
5.4.1	Approximation to a problem of elastodynamics —— 101
5.4.2	Forced motions of an elastic body —— 104
5.4.3	Approximations of displacement and stress fields —— 105
5.4.4	Numerical example —— 107
6	Variational and projection techniques with semi-discretization —— 113
6.1	Variational approach to elastic structure dynamics —— 113
6.1.1	Variational statements of a dynamic problem —— 113
6.1.2	Approximating system of ODEs —— 114
6.1.3	Numerical analysis of elastic beam motions —— 118
6.2	Projection approach to dynamic problems —— 122

6.2.1	Projection statement for elastic beam motions —— 122
6.2.2	Modification of the Petrov-Galerkin method —— 123
6.3	FEM realization of the Petrov-Galerkin method —— 125
7	Integrodifferential approach to eigenvalue problems —— 129
7.1	Modification of the Galerkin method for elastic structures —— 129
7.1.1	Longitudinal motions of an elastic rod —— 129
7.1.2	Comparison of Galerkin and variational approaches —— 131
7.1.3	Projection approach based on the MIDR —— 136
7.2	Semi-discretization in problems of natural beam vibrations —— 139
7.2.1	Natural vibrations of elastic plates —— 139
7.2.2	Variational approach to the eigenvalue problem —— 142
7.2.3	Projection approach to the eigenvalue problem —— 144
7.2.4	Variational versus projection approaches —— 146
7.2.5	Longitudinal plate vibrations —— 147
7.2.6	Lateral in-plane vibrations —— 150
7.3	Special models for plate motions —— 152
7.3.1	Statement of the eigenvalue problem —— 152
7.3.2	Simplified model of longitudinal vibrations —— 156
7.3.3	Refined model of 2D rod vibrations —— 159
7.3.4	Lateral vibrations of a free 2D beam —— 161
8	Spatial vibrations of elastic beams with convex cross-sections —— 165
8.1	Natural motions of a cuboid beam —— 165
8.1.1	Projection approach to a 3D eigenvalue problem in elasticity —— 165
8.1.2	System of DAEs approximating the beam vibrations —— 167
8.1.3	Decomposition of vibration equations for a homogeneous beam —— 168
8.1.4	Breathing of a body with the square cross section —— 170
8.1.5	Torsion of the body —— 173
8.1.6	Longitudinal vibrations —— 174
8.1.7	Lateral vibrations —— 177
8.2	Natural vibrations of beams with triangular cross sections —— 180
8.2.1	Dynamics of an elastic triangular prism —— 180
8.2.2	Semi-discretization of displacement and stress fields —— 181
8.2.3	Integral projections for the triangular cross section —— 184
8.2.4	Natural vibrations of a beam with the isosceles cross section —— 189
9	Double minimization in optimal control problems —— 197
9.1	Optimization of beam motions with polynomials —— 197
9.1.1	Statement of an optimal control problem —— 197
9.1.2	Discretization based on the MIDR —— 198
013	Parametric ontimization of the heam motions —— 199

9.1.4	Numerical examples of controlled motions —— 200
9.2	Polynomial control in dynamic problems of linear elasticity —— 206
9.2.1	Statement of an inverse dynamic problem —— 206
9.2.2	Time-space discretization based on the MIDR —— 208
9.2.3	Optimization of motion parameters —— 208
9.2.4	Structure of polynomial approximations —— 209
9.2.5	Longitudinal motions of a controlled elastic rod —— 210
9.2.6	Controlled motions of a cuboid body with the square bases —— 212
9.2.7	Comparison of 2D and 4D models —— 215
9.3	FEM in control problems of elastic rod displacements —— 220
9.3.1	Statement of an optimal control problem —— 220
9.3.2	Parameterization of state and control functions —— 221
9.3.3	Control optimization for approximate systems —— 223
9.3.4	Regularization of integral error —— 224
9.3.5	Exact solution of the control problem —— 226
10	Semi-discrete approximations in inverse dynamic problems —— 229
10.1	Projection approach to optimization in elastodynamics —— 229
10.1.1	Semi-discretization and FEM in controlled beam dynamics —— 229
10.1.2	Optimization and regularization of approximate solutions —— 231
10.1.3	Solution quality in parametric optimization —— 232
10.2	Optimal control of elastic body motions —— 235
10.2.1	Variational formulation of a direct dynamic problem —— 235
10.2.2	Projection formulation of the problem on body motions —— 237
10.2.3	Statement of an optimal control problem —— 238
10.2.4	Algorithm of discretization —— 239
10.2.5	Spectral boundary value problem —— 242
10.2.6	System of ODEs with respect to time —— 244
10.2.7	Finite-dimensional control problem —— 245
10.3	Variational approach to optimization of parabolic systems —— 248
10.3.1	Statement of a control problem —— 248
10.3.2	Fourier method in heat transfer problems —— 250
10.3.3	Optimal control problem of rod heating —— 252
10.3.4	Variational formulation of the IBVP —— 253
10.3.5	Spatial discretization with polynomials —— 253
10.3.6	Discretization error in the variational approach —— 255
10.3.7	Numerical results of heat control —— 255
11	Modeling and control in mechatronics —— 259
11.1	Optimal rotations of an electromechanical manipulator —— 259
11.1.1	Motion of a flexible link by a drive —— 259
11.1.2	Optimal angular rotation of the link —— 261

11.1.3 11.2	Projection approach to the problem on link motions —— 263 Control of a flexible structure with viscoelastic links —— 268	
11.2.1	Controlled mechanism with flexible links —— 268	
11.2.2	Optimal control problem of structure motion —— 269	
11.2.3	Finite element algorithm —— 270	
11.2.4	Numerical simulation of structure dynamics —— 271	
A	Vectors and tensors —— 275	
В	Sobolev spaces —— 279	
Bibliography —— 281		

Index ---- 287