Contents

Preface ----- v

1	The basic properties of Richardson extrapolation — 1
1.1	The introduction of an initial value problem for systems of ODEs 3
1.2	Numerical treatment of initial value problems for systems of ODEs — 6
1.3	An introduction to Richardson extrapolation — 8
1.4	Accuracy of Richardson extrapolation — 9
1.5	Evaluation of the error — 10
1.6	Major drawbacks and advantages of Richardson extrapolation — 11
1.7	Two implementations of Richardson extrapolation — 17
1.8	Obtaining higher accuracy — 20
1.9	General conclusions related to Chapter 1 — 21
1.10	Topics for further research — 22
2	Richardson extrapolation for explicit Runge–Kutta methods — 23
2.1	Stability function of one-step methods
	for solving systems of ODEs — 25
2.2	Stability polynomials of explicit Runge–Kutta methods — 30
2.3	Using Richardson extrapolation together with
	the scalar test problem — 31
2.4	Impact of Richardson extrapolation
	on absolute stability properties — 32
2.4.1	Stability regions related to the first-order one-stage
	explicit Runge–Kutta method —— 34
2.4.2	Stability regions related to the second-order two-stage
	explicit Runge–Kutta methods — 35
2.4.3	Stability regions related to third-order three-stage
	explicit Runge–Kutta methods —— 36
2.4.4	Stability regions related to fourth-order four-stage
	explicit Runge–Kutta methods —— 38
2.4.5	On the use of complex arithmetic in the program
	for drawing the plots —— 39
2.5	Preparation of appropriate numerical examples — 39
2.5.1	Numerical example with a large real eigenvalue — 40
2.5.2	Numerical example with large complex eigenvalues — 40
2.5.3	A nonlinear numerical example — 42
2.6	Organization of the computations — 44
2.7	Particular numerical methods used in the experiments — 45
2.8	Numerical results — 46

2.9	The development of methods with enhanced
	absolute stability properties — 55
2.9.1	The derivation of two classes of numerical methods
	with good stability properties — 56
2.9.2	Selecting particular numerical methods for Case 1:
	p = 3 and m = 4 - 60
2.9.3	Selecting particular numerical methods for Case 2:
	<i>p</i> = 4 and <i>m</i> = 6 62
2.9.4	Possibilities for further improvement of the results — 68
2.10	General conclusions related to Chapter 2 72
2.11	Topics for further research — 74
3	Linear multistep and predictor-corrector methods —— 75
3.1	Linear multistep methods for solving systems of ODEs 77
3.1.1	Order conditions — 78
3.1.2	Basic definitions — 78
3.1.3	Attainable order of linear multistep methods — 80
3.1.4	Drawbacks and advantages of linear multistep methods — 80
3.1.5	Frequently used linear multistep methods — 82
3.2	Variation of the time-step size for linear multistep methods — 83
3.2.1	Calculation of the coefficients of an LM VSVFM
3.2.2	Zero-stability properties of an LM VSVFM 85
3.3	Absolute stability of the linear multistep methods — 86
3.4	Difficulties related to the implementation
	of Richardson extrapolation 90
3.5	Introduction of some predictor-corrector schemes — 91
3.6	Local error estimation — 93
3.7	Absolute stability of predictor-corrector schemes 98
3.8	The application of several different correctors — 102
3.8.1	An example from the field of environmental modelling 103
3.8.2	Some absolute stability considerations related to
	environmental modelling — 105
3.8.3	Numerical experiments 108
3.9	A-stability of the linear multistep methods — 110
3.10	Coefficients of some popular linear multistep methods — 111
3.11	General conclusions related to Chapter 3 — 111
3.12	Topics for further research —— 117
4	Richardson extrapolation for some implicit methods —— 119
4.1	Description of the class of θ -methods — 120
4.2	Stability properties of the θ -methods — 122
4.3	Combining the θ -method with Richardson extrapolation — 126

4.4	Stability of Richardson extrapolation combined with θ -method — 127
4.5	The problem with implicitness — 134
4.5.1	Application of the classical Newton iterative method — 135
4.5.2	Application of the modified Newton iterative method — 138
4.5.3	Achieving better efficiency by keeping an old decomposition
4.5.5	of the Jacobian matrix — 139
4.5.4	Selecting stopping criteria — 140
4.5.5	Richardson extrapolation and the Newton method 144
4.6	Numerical experiments — 146
4.6.1	Atmospheric chemical scheme — 146
4.6.2	Organization of the computations — 149
4.6.3	Achieving second-order accuracy — 152
4.6.4	Comparison of the θ -method with $\theta = 0.75$
4.0.4	and the backward Euler formula — 153
4.6.5	Comparing the computing times needed to obtain
4.0.5	the prescribed accuracy — 154
4.6.6	Using the trapezoidal rule in the computations — 157
4.7	Using implicit Runge–Kutta methods — 159
4.7.1	Fully implicit Runge Kutta methods — 159
4.7.2	Diagonally implicit Runge–Kutta methods — 160
4.7.3	Evaluating the reduction of the computational cost
4.7.5	when DIRK methods are used — 161
4.7.4	Applying Richardson extrapolation for fully implicit
4./.4	Runge–Kutta methods — 163
47E	
4.7.5	Applying Richardson extrapolation for diagonally implicit
	Runge–Kutta methods — 166 Stability regults related to active Bishardson system eletion — 167
4.7.6	Stability results related to active Richardson extrapolation — 167
4.7.7	Numerical experiments — 170 Concrete conclusions related to Chapter (178
4.8	General conclusions related to Chapter 4 178
4.9	Topics for further research — 179
5	Richardson extrapolation for splitting techniques — 181
5.1	Richardson extrapolation for sequential splitting 181
5.2	Derivation of the stability function for the sequential
	splitting procedure — 183
5.3	Stability properties of the sequential splitting procedure — 186
5.4	Some numerical experiments — 192
5.4.1	Splitting the atmospheric chemical scheme — 193
5.4.2	Organization of the computations — 193
5.4.3	Results obtained when the backward Euler formula is used — 195
5.4.4	Results obtained when the θ -method with θ = 0.75 is used — 195
5.4.5	Results obtained when the trapezoidal rule is used — 197

- 5.4.6 Some conclusions from the numerical experiments 197
- 5.5 Marchuk–Strang splitting procedure 198
- 5.5.1 Some introductory remarks 198
- 5.5.2 The Marchuk–Strang splitting procedure and Richardson extrapolation 200
- 5.5.3 Stability function of the combined numerical method 201
- 5.5.4 Selection of an appropriate class of Runge–Kutta methods 203
- 5.5.5 Absolute stability regions of the combined numerical methods ---- 205
- 5.5.6 Some numerical results 207
- 5.5.7 Concluding remarks 213
- 5.6 General conclusions related to Chapter 5 213
- 5.7 Topics for further research 214

6 Richardson extrapolation for advection problems — 215

- 6.1 The one-dimensional advection problem 216
- 6.2 Combining the advection problem
- with Richardson extrapolation 218
- 6.3 Implementation of Richardson extrapolation 220
- 6.4 Order of accuracy of the combined numerical method 221
- 6.5 Three numerical examples 225
- 6.5.1 Organization of the computations 225
- 6.5.2 Construction of a test problem with steep gradients of the unknown function ---- 227
- 6.5.3 Construction of an oscillatory test problem 230
- 6.5.4 Construction of a test problem with discontinuous derivatives of the unknown function 231
- 6.5.5 Comparison of the four implementations of Richardson extrapolation 233
- 6.6 Multi-dimensional advection problem ---- 235
- 6.6.1 Introduction of the multi-dimensional advection equation 235
- 6.6.2 Expanding the unknown function in Taylor series 236
- 6.6.3 Three special cases 241
- 6.6.4 Designing a second-order numerical method for multi-dimensional advection 243
- 6.6.5 Application of Richardson extrapolation 244
- 6.7 General conclusions related to Chapter 6 255
- 6.8 Topics for further research 256
- 7 Richardson extrapolation for some other problems 257
- 7.1 Acceleration of the speed of convergence for sequences of real numbers 258
- 7.1.1 Improving the accuracy in calculations related to the number π 259

- 7.1.2 Definitions related to the convergence rate of some iterative processes 259
- 7.1.3 The Aitken scheme and Steffensen's improvement 261
- 7.1.4 Richardson extrapolation for sequences of real numbers: An example — 264
- 7.2 Application of Richardson extrapolation to numerical integration 268
- 7.3 General conclusions related to Chapter 7 271
- 7.4 Topics for further research 271
- 8 General conclusions 277

References — 279

List of abbreviations ----- 287

Author index ----- 289

Subject index — 291