

Contents

Preface *xi*

1	High-Performance Metal–Polymer Composites: Chemical Bonding, Adhesion, and Interface Design	1
1.1	Introduction	1
	References	10
2	Interpretation of Adhesion Phenomena – Review of Theories	13
2.1	General	13
2.2	Mechanical Interlocking	20
2.2.1	Mechanical Interlocking in a Macroscopic Scale	20
2.2.2	Mechanical Adhesion on a Microscale	20
2.2.3	Mechanical Anchoring on a Molecular Scale	21
2.3	Interdiffusion	23
2.3.1	Diblock Copolymers for Interface-Crossing Adhesion Promotion	23
2.3.2	Interdiffusion and Welding	23
2.3.3	Diffusion of Metals into Polymers	25
2.4	Interphase Formation	28
2.4.1	Polymer–Polymer Blends	28
2.4.2	Nanoparticle Composites	29
2.4.3	Transcocrystalline Layers	29
2.4.4	Redox Reactions across the Metal–Polymer Interface	30
2.4.5	Reactions of Transition Metals with Aromatic Polymers	32
2.4.6	Loss in Anisotropic Orientation of Polymers Caused by Pretreatment or by Contact to Metals	34
2.4.7	Weak Boundary Layer	36
2.5	Weak Molecular Interactions (Cohesive Forces)	38
2.5.1	Thermodynamic Adsorption, Wetting Model	38
2.5.2	Contact Angle, Surface Properties, and Adhesion	39
2.5.3	Contact Angle Measurement	40
2.5.4	Advancing and Receding Contact Angles, Contact Angle Hysteresis	42

2.5.5	Real Surfaces	43
2.5.6	Critical Surface Tension – Zisman Plot	44
2.5.7	Surface Tension Theories	46
2.5.8	Polar and Dispersive Components of Surface Tension	47
2.5.9	Acid–Base Interactions	48
2.5.10	Rheological Model	51
2.5.11	Summary	51
2.6	Electrostatic Attraction	52
2.7	Contaminations, Role of Water, or Humidity	54
2.8	Coupling Agents	55
2.9	Use of Glues (Adhesives)	59
2.10	Hydrophobic Recovery	70
	References	72
3	Interactions at Interface	89
3.1	Composites and Laminates	89
3.2	Laminate Processing	90
3.3	Polymers as Substrate or as Coating	92
3.4	Chemical Reactions at Surfaces	92
3.4.1	Chemisorption	92
3.5	Reactions of Metal Atoms with Polyolefins	97
3.6	Reaction of Metal Atoms with O-Functional Groups at Polymer Surfaces	97
3.7	Reactions of Metal Atoms with Amino Groups on Polymer Surfaces	105
3.8	Silane and Siloxane Adhesion-Promoting Agents	105
	References	107
4	Chemical Bonds	113
4.1	Bonds in Polymers	113
4.1.1	Covalent C–H and C–C Bonds in Polymers	113
4.1.2	C–C Double, Triple, Conjugated, and Aromatic Bonds	116
4.1.3	C–O, C=O, O–C=O, and O=CO–O Bonds in Polymers	117
4.1.4	N-Containing Functional Groups	118
4.1.5	Chemical Bonds in Other Materials	119
4.2	Reactions of Chemical Bonds during Pretreatment	119
4.2.1	Aliphatic Chains	119
4.2.2	Preformed Degradation Products and Preferred Rearrangement Processes	121
4.3	Chemical Bonds at Interface	122
4.3.1	Polymer–Polymer Linking	122
4.3.2	Carbon–Metal Bonds	123
4.3.3	Covalent Bonds between Oxides and Polymers	126
4.3.4	Interface between Polymers and Transition Metals	127
	References	130

5	Functional Groups at Polymer Surface and Their Reactions	135
5.1	OH Groups at Surface	135
5.2	Primary Amino Groups at Polymer Surfaces	140
5.3	Carboxylic Groups as Anchor Points for Grafted Molecules	143
5.4	Bromination	146
5.5	Silane Bonds	147
5.6	Click Chemistry	148
5.7	ATRP	150
5.8	Grafting	152
5.8.1	Grafting of Fluorescence Markers onto Functional Groups at Polyolefin Surfaces	153
5.8.2	Covalent Linking of Spacer Bonded Dye Sensors onto Polyolefin Surfaces	154
5.8.3	Covalent Linking of Spacer Bonded Dye Sensors onto Polyolefin Surfaces Supported by a Cucurbituril Jacket	155
5.8.4	Grafting of Polyglycerols onto Polyolefin Surfaces for Introducing Antifouling Property	156
5.8.5	Summary of Complex Structures Covalently Grafted onto Polyolefin Surfaces	159
5.9	Polymers Deposited onto Silicon or Glass	162
5.10	Molecular Entanglement of Macromolecules of Coating and Substrate at Polymer Surfaces (Interpenetrating Network at Interface)	162
	References	165
6	Pretreatment of Polyolefin Surfaces for Introducing Functional Groups	173
6.1	Situation at Polyolefin Surfaces	173
6.2	Physical and Chemical Attacks of Polyolefin Surfaces	173
6.3	A Few General Remarks to the Pretreatment of Polyolefins	179
6.4	Introduction of Functional Groups to polyolefin Surfaces	184
6.5	Usual Pretreatment Processes and Their Advantages and Disadvantages	186
6.5.1	Oxygen Plasma Exposure	186
6.5.2	Structural Degradation of Polymer on Exposure to Oxygen Plasma	187
6.5.3	Degradation of Polymers by Exposure to Oxygen Plasma	192
6.5.4	Cross-linking of Polymers by Plasma-Emitted UV Radiation	198
6.6	Surface Oxidation by Atmospheric-Pressure Plasmas (Dielectric Barrier Discharge-DBD, Atmospheric Pressure Glow Discharge-APGD or Corona Discharge, Spark Jet, etc.)	201
6.7	Flame Treatment	204
6.8	Silicoater Process (Pyrosil)	205
6.9	Laser Ablation	205
6.10	UV Irradiation with Excimer Lamps	206

6.11	Ozone	211
6.12	Mechanical Pretreatment	213
6.13	Cryogenic Blasting	214
6.14	Skeletonizing	214
6.15	Roughening for Mechanical Interlocking and Increasing of Surface Area by Plasma and Sputter Etching	215
6.16	Solvent Cleaning	215
6.17	Solvent Welding	217
6.18	Chemical Treatment by Chromic Acid and Chromo-Sulfuric Acid	218
6.19	Chemical Etching and Functionalizing of Fluorine-Containing Polymers	220
6.20	Oxyfluorination	221
6.21	Sulfonylation	222
6.22	Sputtering for Film Deposition	223
6.23	Cross-linking as Adhesion Improving Pretreatment (CASING)	225
6.24	Monosort Functionalization and Selective Chemical Reactions	226
6.24.1	Well-Defined Functionalization of Polymer Surfaces by Classic Organic Chemistry	226
6.24.2	Selective Monosort Functionalization of Polymer Surfaces by Oxygen Plasma Exposure and Post-Plasma Chemical Treatment for Producing OH Groups	227
	References	237
7	Adhesion-Promoting Polymer Layers	259
7.1	General	259
7.2	Historical Development	261
7.3	Influence of Plasma Wattage on Chemical Structure of Plasma Polymers	263
7.4	Pulsed-Plasma Polymerization	265
7.5	Pressure-Pulsed Plasma	267
7.6	Copolymerization in Pulsed Plasmas	271
7.7	Some Additional Details to the Mechanisms of Plasma Polymerization	275
7.8	Often-Observed Abnormal Side Reactions Occurring in the Plasma Only	278
7.9	Structure of Plasma Polymers	281
7.10	Use of Plasma Polymers as Adhesion-Promoting Layers	286
7.11	Adhesion Promotion of Very Thick Layers	289
7.12	Summary	290
	References	290
8	Monosort Functional Groups at Polymer Surfaces	299
8.1	Introduction	299
8.2	Bromination of Polyolefin Surface by Exposure to the Br ₂ Plasma	305
8.3	Bromoform as Precursor	309
8.4	Deposition of Plasma Polymers Carrying C—Br Groups	312

8.5	Loss in Bromine Groups by Wet-Chemical Processing	313
8.6	Other Halogenations	314
8.6.1	Chlorination	315
8.6.2	Fluorination	317
8.6.3	Iodination	317
8.6.4	Measuring the Electron Temperature in Haloform Plasmas	317
8.6.5	Comparison of Halogenation Processes	318
8.7	C—Br as Anchoring Point for Grafting	319
8.7.1	Changing the C—Br Functionalization into NH ₂ Functionalization	319
8.7.2	Other Functional Groups	321
8.7.3	Grafting onto C—Br Groups	322
8.8	Underwater Capillary Discharge Plasma or Glow Discharge Electrolysis (GDE)	323
8.9	Conclusions	323
	References	322
9	Chemical Grafting onto Monosort Functionalized Polyolefin Surfaces	337
9.1	General Aspects	337
9.2	Grafting of Spacers onto Radicals	344
9.3	Grafting of Spacers and Oligomers by Reaction with C—OH Groups at the Polyolefin Surface	346
9.4	Grafting of Linear Spacers and Oligomers onto C—Br Groups	347
9.5	Introduction of Spacers with Siloxane Cages (POSS)	349
9.6	Grafting via Click Reaction	350
9.7	Influence of Spacers on the Metal—Polymer Adhesion	351
9.8	Summary	352
	References	353
10	Conclusions and Outlook to the New Interface Design	357
10.1	Introduction	357
10.2	Physical Effects Produced by Covalent Bonding of Metal to Polymer	360
10.3	Introduction of Functional Groups onto Polyolefin Surfaces Associated with Damaging of Polymer Structure Near Surface	363
10.4	Thermal Expansion Coefficients of Metals and Polymers	365
10.5	Differences between Al—Polyolefin and Polyolefin—Al Laminates	366
10.6	Protection of Covalent Metal—Polymer Bonds along the Interface	367
10.7	Reaction Pays for Grafting Spacer Molecules onto Polyolefin Surfaces	368
10.8	Special Requirements for Metal Deposition Especially Aluminum	370
10.9	Used Ways to Introduce Spacers for Maximum Adhesion	372
10.9.1	Spacer Attachment onto NH ₂ Groups	372
10.9.2	Spacer Grafting onto OH-Groups at Polymer Surface	375
10.9.3	Spacer Anchoring onto C—Br Groups	376

10.9.4	Silane Attachment	376
10.9.5	Silane Hydrolysis and Subsequent Partial Cross-linking	377
10.9.6	Adhesion Strength Measurements	381
10.9.7	Summary and Conclusions	383
	References	388
11	Short Treatise on Analysis Chemical Features	395
11.1	General	395
11.2	Bulk Analysis	395
11.2.1	Infrared Spectroscopy	396
11.2.2	UV-vis Spectroscopy	400
11.2.3	NMR Spectroscopy	401
11.2.4	MALDI- and ESI-ToF-MS	403
11.2.5	HPLC and GPC/SEC	405
11.3	Surface Analysis	406
11.3.1	Sampling Depth	406
11.3.2	XPS	408
11.3.3	ToF-SIMS	410
11.3.4	SEIRA and IRRAS	412
	References	414
	Index	415