Contents

Preface ---- v

1	Introduction — 1
2	The Hele-Shaw problem —— 25
2.1	Classical solution to the Hele-Shaw problem —— 25
2.1.1	The problem setting —— 25
2.1.2	The equivalent problem in a fixed domain —— 26
2.1.3	Auxiliary results —— 27
2.1.4	Proof of Theorem 2.1 —— 28
2.1.5	Proof of Theorem 2.2 —— 31
2.2	Weak solutions to the Hele-Shaw problem 42
2.2.1	The problem setting —— 42
2.2.2	Proof of Theorem 2.5: existence —— 45
3	A joint motion of two immiscible viscous fluids —— 53
3.1	A single capillary in an absolutely rigid skeleton:
	Dirichlet boundary conditions —— 53
3.1.1	The problem setting —— 53
3.1.2	The main result —— 54
3.1.3	Proof of the main result —— 54
3.1.4	Smooth initial density: existence and uniqueness —— 55
3.1.5	Passage to non-mooth initial data —— 59
3.1.6	Existence of a regular free boundary — 60
3.1.7	Uniqueness of the solution —— 62
3.2	A single capillary of an absolutely rigid skeleton:
	Neumann boundary conditions —— 64
3.2.1	The problem setting —— 64
3.2.2	Proof of the main result —— 67
3.2.3	Smooth initial density —— 68
3.2.4	$W^{1,1}$ bounds for density —— 74
3.2.5	Passage to nonsmooth initial data, existence of a regula
	free boundary —— 75
3.2.6	Existence of the maximal time interval and uniqueness
	of the solution —— 77
3.3	A single capillary of an elastic skeleton:
	Neumann boundary conditions — 77
3.3.1	The main result —— 80
3.3.2	Proof of the main result —— 82

3.3.3	Approximate smooth density —— 83
3.3.4	Uniform bounds for the velocity and pressure of fluid —— 89
3.3.5	Uniform bounds for density —— 96
3.4	Generalized Muskat problem —— 97
3.4.1	Statement of the problem and main results — 98
3.4.2	Proof of Theorem 3.4 —— 101
3.4.3	Proof of Theorem 3.5 —— 110
3.5	Numerical implementations for the Muskat problem —— 110
3.5.1	Numerical implementations for the Muskat problem
	with Neumann boundary conditions for absolutly rigid skeletons
	with surface tension —— 110
3.5.2	Numerical implementations for the Muskat problem
	with Neumann boundary conditions for an absolutely rigid skeletor
	without surface tension —— 116
3.5.3	Numerical implementations for the Muskat problem
	with Neumann boundary conditions for an elastic skeleton
	without surface tension —— 117
3.5.4	Equations for fluid-structure interaction —— 124
3.5.5	Numerical implementations for the Muskat problem
	with Neumann boundary conditions for elastic skeleton
	with surface tension —— 127
4	Mathematical models of in-situ leaching —— 129
4.1	Microscopic description — 129
4.1.1	Mathematical model in the form of differential equations —— 129
4.1.2	Numerical implementations —— 133
4.2	Macroscopic description —— 139
4.2.1	Mathematical model as a system of integral identities —— 139
4.2.2	Homogenization —— 142
4.2.3	Mathematical model in a form of differential equations —— 143
4.2.4	Initial boundary-value problem, describing in-situ leaching
	at the macroscopic level —— 149
4.2.5	Numerical implementations —— 150
5	Dynamics of cracks in rocks —— 155
5.1	Accumulation of the energy in a single crack:
	the microscopic (pore) level —— 155
5.1.1	Mathematical model —— 155
5.1.2	Basic a-priori estimates —— 158
5.2	Accumulation of the energy in a single crack:
	the macroscopic description —— 161
5.2.1	Basic axioms —— 161

5.2.2	Homogenization —— 161
5.2.3	A joint motion of the elastic body and the liquid in crack —— 163
5.2.4	Accumulation of the energy in a single crack —— 164
5.3	Macroscopic model of crack propagation —— 165
A	Elements of continuum mechanics —— 167
A.1	Subject and method of continuum mechanics —— 167
A.2	Basic definitions and axioms —— 170
A.3	Continuous motion —— 176
A. 4	Elements of thermodynamics —— 180
A. 5	Some classical models of continuum mechanics — 181
A.6	Shock relations —— 186
4. 7	Joint motion of an elastic sold and a viscous liquid —— 191

References — 207

Index —— 211