

Contents

1	Basics of Fluid Mechanics and Convective Heat Transfer	1
1.1	Fluid Properties	1
1.1.1	Viscosity	1
1.1.2	Density	2
1.1.3	Thermal Conductivity	2
1.1.4	Surface Tension	3
1.1.5	Speed of Sound and Mach Number	3
1.1.6	Newtonian and Non-Newtonian Fluids	3
1.2	Treatments and Visualization of Fluid.	4
1.2.1	Eulerian and Lagrangian Approaches	4
1.2.2	Streamline, Streakline and Pathline.	4
1.2.3	Integral and Differential Treatments	5
1.3	Vorticity and Irrotational Flow.	6
1.4	Force, Strain and Stress.	7
1.5	Fluid Acceleration	9
1.6	Mass Conservation	9
1.7	Conservation of Linear Momentum.	10
1.8	Navier–Stokes Equations	11
1.9	Conservation of Energy.	11
1.10	Boundary Conditions.	12
1.10.1	No Slip and No Temperature Jump Conditions	12
1.10.2	Inlet and Outlet	13
1.10.3	Interface	13
1.11	Convective Heat Transfer	13
1.12	Examples.	15
1.12.1	Flow Normal to an Infinite Circular Cylinder	15
1.12.2	Thermal Boundary-Layer Inside a Heated Circular Tube.	17
1.13	Concluding Remarks.	18
	References	18

2	Fluid Turbulence	19
2.1	Physical Description	19
2.2	Stability of Laminar Flows	22
2.3	Transition and Onset of Turbulence	22
2.4	Types of Turbulent Flows	23
2.5	Significance of Turbulent Flows and Heat Transfer	24
2.6	Turbulence in the Vicinity of a Solid Wall	25
2.7	Task of a Turbulence Model	28
2.8	Concluding Remarks	29
	References	29
3	Characteristics of Some Important Turbulent Flows	31
3.1	Boundary-Layer Flow Past a Flat Plate	31
3.2	Forced and Free Convections	34
3.3	Simple Free Shear Flows	35
3.4	Circular Pipe and Parallel Plates	38
3.5	Separated Flows	40
3.6	Concluding Remarks	42
	References	42
4	Reynolds-Averaged Governing Equations and Closure Problem	43
4.1	Types of Reynolds-Averaging	43
4.1.1	Time-Average	44
4.1.2	Spatial-Average	44
4.1.3	Ensemble-Average	44
4.2	RANS and Scalar Equations	46
4.3	Closure Problem	47
4.4	Concluding Remarks	48
	References	48
5	Models Based on Boussinesq Approximation	49
5.1	Boussinesq Approximation	49
5.2	Models Based on Boussinesq Approximation	50
5.2.1	Mixing Length Models	50
5.2.2	One Equation Model	53
5.2.3	Two Equation Models	56
5.3	Limitations of Boussinesq Approximation	56
5.4	Examples	56
5.5	Concluding Remarks	56
	References	57
6	$k-\varepsilon$ and Other Two Equations Models	59
6.1	Introduction	59
6.2	Standard $k-\varepsilon$ Model	59

6.3	Exact Transport Equations for k and ε	60
6.4	Modelled Transport Equations for k and ε	60
6.5	Features of the k – ε Model	62
6.6	Boundary Conditions.	62
6.7	Treatment of Wall	63
6.7.1	Wall Functions Approach	63
6.7.2	Low Reynolds Number Models	65
6.8	Example: Oscillatory Boundary Layers	67
6.9	Some Modern Variants of k – ε Model	67
6.9.1	RNG k – ε Model	68
6.9.2	Realizable k – ε Model	68
6.9.3	k – ω Model	69
6.10	V2f Model.	70
6.11	Shear Stress Transport k – ω Model	72
6.12	Other Two Equation Models	73
6.13	Modifications to k – ε Model for Buoyancy Driven Flows.	73
6.14	Other Modifications	76
6.15	Concluding Remarks	77
	References	78
7	Reynolds-Stress and Scalar Flux Transport Model	81
7.1	Introduction	81
7.2	Modeled Equations for Reynolds Stress Transport Model	81
7.2.1	Modeling of Turbulent Transport	82
7.2.2	Modeling of Pressure Strain.	83
7.2.3	Modeling of Dissipation	83
7.3	Exact Transport Equation for Scalar Flux	84
7.4	Boundary Conditions.	84
7.5	Treatment of Solid Walls.	85
7.6	Features of Reynolds-Stress and Scalar Flux Transport Model	86
7.7	Algebraic Stress and Scalar Flux Models.	86
7.8	Examples.	87
7.9	Concluding Remarks	88
	References	89
8	Direct Numerical Simulation and Large Eddy Simulation	91
8.1	Introduction	91
8.2	Direct Numerical Simulation	92
8.3	Large Eddy Simulation	93
8.4	Subgrid Scale Models for LES.	95
8.4.1	Smagorinsky SGS Model.	95
8.4.2	Dynamic SGS Model	96
8.4.3	Scale Similarity SGS Model	97

8.5	DNS vis-à-vis LES	97
8.6	Detached Eddy Simulation and Hybrid Models	97
8.7	Treatment of Walls in LES	98
8.7.1	Wall Models That Use Equilibrium Laws	99
8.7.2	Velocity and Temperature TBLE Wall Model	100
8.8	Initial, Boundary Conditions and Duration of Computations	102
8.9	Concluding Remarks	103
	References	104
9	Some Case Studies	105
9.1	Heat Exchangers	105
9.2	Stirred Vessels	107
9.3	Flow in a Tundish Used in Steel Making	108
9.4	Turbulent Plume	109
9.5	LES and DES of Particle Deposition in a Human Throat	111
9.6	Unsteady Cross Ventilation in Buildings	112
9.7	Effect of Turbulent Prandtl Number on Film Cooling	113
9.8	Flow Over Rough Walls with Suction	114
9.9	Separated Convection Due to Backward Facing Step	114
9.10	Concluding Remarks	114
	References	115
10	Conclusions and Recommendations	117
10.1	Tackling Turbulence	117
10.2	CFD Issues	119
	References	119