Contents

Foreword -	v
Preface —	-VII
About the	Editors —— XIV
List of Con	tributing Authors —— XVI
Barbara Fo	ster
1 Th	e World of Nanotechnology —— 1
1.1	Introduction —— 1
1.2	What Is Nanotechnology? —— 2
1.3	The Growing World of Nanomaterials —— 3
1.3.1	Carbon-Based Nanomaterials —— 3
1.3.2	Colloidal-Based Nanomaterials —— 5
1.3.3	Quantum Dots — 5
1.3.4	Biologically Based Nanomaterials —— 8
1.4	Instrumentation for Investigating Nanotechnology —— 8
1.5	Where Is Nanotechnology Today? —— 10
1.6	Applications —— 11
1.7	The Role of the Government in Promoting Nanotechnology —— 14
1.8	The Nanotechnology Market —— 16
1.8.1	Is There Really a "Nanotechnology Market"? —— 16
1.8.2	What Is the Size of the Nanotechnology Market? —— 19
1.8.3	Nanotechnology Market Sectors —— 21
1.8.4	Report Synopses and Excerpts —— 23
1.9	The Challenge of Nanotechnology Safety —— 28
1.10	The Crucial Need for Education and Certification —— 29
1.11	The Future —— 32
1.11.1	Nanotechnology Signature Initiatives —— 32
1.11.2	Future Research Projects —— 33
1.12	Questions for Contemplation —— 36
1.13	Bibliography —— 36
Eylem Asm	atulu
- Th	- World of Fusing sing Non-materials 44

2	ine world of Engineering Nanomaterials —— 41
2.1	Introduction —— 41
2.1.1	How Did Engineering Nanomaterials Evolve? —— 41
2.2	Stabilization of Nanomaterial Shape —— 43

2.2.1	Surfactants — 43
2.2.2	Nanomaterial Shape and Stabilization —— 43
2.3	Classification and Labeling of Nanomaterials —— 46
2.3.1	What Are Nanomaterials? —— 46
2.3.2	Types of Nanoparticles —— 46
2.3.3	Labeling of Nanomaterials —— 49
2.4	Toxicity of Nanomaterials —— 51
2.4.1	Particle Size —— 51
2.4.2	Surface Chemistry —— 51
2.4.3	Surface Charges —— 51
2.4.4	Surface Area —— 52
2.5	Exposure Assessment —— 52
2.5.1	Exposure Limit for Nanoparticles —— 52
2.5.2	Exposure Monitoring —— 56
2.6	Conclusions — 57
2.7	Bibliography —— 57
W. S. Khan a	and R. Asmatulu
3 The	Importance of Safety for Manufacturing Nanomaterials — 61
3.1	Rapid Growth of Nanotechnology —— 61
3.2	Nanotechnology Involvement —— 62
3.2.1	Scope of Nanotechnology —— 62
3.2.2	Nanotechnology Education and Research Programs —— 64
3.3	Nanostructured Materials — 66
3.3.1	Nanoparticles — 67
3.4	Toxicity of Nanomaterials —— 70
3.4.1	Toxicity of Carbon-Based Nanomaterials —— 71
3.4.2	Toxicity of Metal-Based Nanomaterials — 73
3.5	In Vitro Assessments of Nanomaterial Toxicity —— 75
3.5.1	Detection of Surface Contamination —— 75
3.5.2	Particle Sizing and Aggregation —— 76
3.6	Nano-safety — 79
3.6.1	Potential Safety Issues —— 80
3.6.2	Exposure Assessment and Characterization —— 80
3.6.3	Precautionary Measures —— 80
3.7	Conclusions — 82
3.8	Bibliography —— 82
Jitendra S. T	ate and Roger A. Hernandez
4 Saf	ety Approaches to Handling Engineered Nanomaterials —— 85
4.1	Introduction —— 85
4.2	Potential Health Concerns —— 85

4.3	Proactive Measures to Examine Precautions —— 86
4.4	Assessment of Engineered Nanomaterials —— 87
4.4.1	Hazard Assessment —— 87
4.4.2	Hazardous Communication —— 88
4.4.3	Exposure Assessment —— 88
4.5	Characterization of Engineered Nanomaterials —— 90
4.5.1	Fullerenes —— 90
4.5.2	Carbon Nanotubes —— 90
4.5.3	Carbon Black —— 91
4.5.4	Quantum Dots —— 91
4.5.5	Metals and Metal Oxides —— 91
4.6	Control Preferences —— 92
4.6.1	Elimination —— 93
4.6.2	Substitution —— 93
4.6.3	Isolation — 93
4.6.4	Engineering Controls —— 93
4.6.5	Administrative Controls —— 94
4.6.6	Personal Protective Equipment —— 96
4.7	Management of Engineered Nanomaterials —— 96
4.7.1	Waste Disposal —— 97
4.7.2	Management of Spills —— 97
4.8	Overview of National and International Associations that Adopted the
	Handling and Use of Nanomaterials —— 98
4.8.1	British Standards Institution —— 98
4.8.2	Health and Safety Executive —— 98
4.8.3	International Organization for Standardization —— 99
4.8.4	Organisation for Economic Co-operation and Development —— 100
4.8.5	US National Institute for Occupational Safety and Health —— 101
4.8.6	Safe Work Australia —— 102
4.9	Concluding Remarks —— 103
4.10	Questions for Contemplation —— 104
4.11	Bibliography —— 105
Christie	e M. Sayes
5	Certification: Validating Workers' Competence in Nano-safety —— 108
5.1	Introduction —— 108
5.2	Definition of Nanotechnology for Training and Certification —— 109
5.3	Occupational and Environmental Health and Safety
	Management —— 109
5.4	Anticipating Hazards in Nanotechnology —— 112
5.5	Recognizing Hazards in Nanotechnology —— 113
5.6	Evaluating Hazards in Nanotechnology —— 115
5.7	Controlling Hazards in Nanotechnology —— 115

5.8	Confirming Hazards in Nanotechnology —— 117
5.9	Conclusions —— 118
5.10	Questions for Contemplation —— 118
5.11	Bibliography —— 119
Walt Tr	ybula and Deb Newberry
6	Understanding the Implications of Nanomaterial Unknowns —— 121
6.1	Introduction —— 121
6.2	Background on Nanotechnology Safety Programs —— 122
6.3	What are Nanomaterial Unknowns? —— 125
6.4	Impact on the public —— 127
6.5	Risk Avoidance —— 130
6.6	Ethics 131
6.7	Government Pressure to Create Facts —— 133
6.8	There Is No Place for Politics or Opinions —— 134
6.9	Summary —— 137
6.10	Questions for Contemplation —— 137
6.11	Bibliography —— 137
Evelyn	H. Hirt and Walt Trybula
7	What Is Considered Reliable Information? —— 139
7.1	Introduction —— 139
7.2	Background on the Use of "nano" —— 140
7.3	Information "Fact and Fiction" – the Dangers —— 142
7.3.1	Questionable Correlations in Chinese Workers' Deaths —— 143
7.3.2	Questionable Identification of "nano" Specific Dangers —— 143
7.3.3	Questionable Correlation of Carbon Nanotubes to Asbestos — 144
7.3.4	Issues with Nanosilver Particles —— 144
7.3.5	Overgeneralization of Human Contact with Nanomaterials —— 145
7.3.6	Impacts of Litigation on Fact Finding and Misleading
	Correlations —— 146
7.3.7	Sources with Conflicting Information —— 146
7.3.8	Separating 'Fact and Fiction' —— 147
7.4	Validity and Availability of Information Sources —— 147
7.4.1	Professional Societies: Resources and Publications —— 148
7.4.2	Government-Sponsored Publications and Resources —— 150
7.4.3	Other Information Resources —— 150
7.5	Summary and Observations —— 151
7.6	Questions for Contemplation —— 151
7.7	Bibliography —— 152

J. Craig	Hanks and Emily Kay Hanks
8	Ethics and Communication: The Essence of Human Behavior —— 153
8.1	Introduction —— 153
8.2	The Challenge of Ethics for Emerging Technologies —— 154
8.3	What Does It Take to Be a Good Professional? —— 155
8.4	Technical and Procedural Knowledge and Skill Are Necessary, but not
	Enough —— 156
8.5	Guidance from Rules Is Necessary, but Compliance
	Is not Enough —— 157
8.6	Considering Ethical Frameworks —— 160
8.6.1	Deontology and Kant: Autonomy and Respect for Persons —— 160
8.6.2	The Pursuit of Happiness: Utilitarian Ethics —— 163
8.6.3	Virtue: Character and Practice —— 165
8.7	Communication and Ethics —— 168
8.8	Final Remarks —— 170
8.9	Questions for Contemplation —— 171
8.10	Bibliography —— 171
Christie	M. Sayes, Patrick Van Burkleo, and Grace V. Aquino
9	Behavior-Based Worker Safety for Engineered Nanomaterials —— 177
9.1	Introduction —— 177
9.2	Traditional Behavior-Based Worker Safety —— 178
9.3	The ABC Model as applied to Nanotechnology in the Workplace —— 179
9.4	Exposure Scenarios Along the Nanomaterial Value Chain —— 180
9.4.1	Stage 1: Production and Manufacturing —— 182
9.4.2	Stage 2: Distribution and Transportation —— 183
9.4.3	Stage 3: Formulators and Users —— 184
9.4.4	Stage 4: Disposal, Recycle, and Reuse —— 185
9.5	The Role of the Employer —— 186
9.6	Questions for Contemplation —— 187
9.7	Bibliography —— 187
Dominio	k Fazarro
10	The Future of Nanotechnology Safety —— 191
10.1	Bibliography —— 192

Index ---- 193