

Contents

1	Introduction — 1
1.1	Overview of RE–Mg–Ni-Based Hydrogen Storage Alloys — 1
1.2	Structure Characteristics of RE–Mg–Ni-Based Hydrogen Storage Alloys — 4
	References — 6
2	Preparation, Electrochemical Properties and Gaseous Hydrogen Storage Characteristics of the Single-Phase Superlattice RE–Mg–Ni-Based Hydrogen Storage Alloys — 9
2.1	The Preparation and Characteristics in Electrochemical and Gaseous Hydrogen Storage of the Single-Phase Superlattice La–Mg–Ni-Based Hydrogen Storage Alloys — 10
2.1.1	Preparation of the Single-Phase Superlattice La–Mg–Ni-Based Hydrogen Storage Alloys — 10
2.1.2	The Peritectic Reaction Process for the Formation of the Single-Phase Superlattice La–Mg–Ni-Based Hydrogen Storage Alloys — 11
2.1.3	The Crystal Structure Characteristic of the Single-Phase Superlattice La–Mg–Ni-Based Hydrogen Storage Alloys — 13
2.1.4	The Gaseous Hydrogen Storage and Electrochemical Characteristics of the Single-Phase Superlattice La–Mg–Ni-Based Hydrogen Storage Alloys — 17
2.1.5	The Capacity Degradation Mechanism of the Single-Phase Superlattice La–Mg–Ni-Based Hydrogen Storage Alloys — 20
2.2	The Preparation and Characteristics in Electrochemical and Gaseous Hydrogen Storage of the Single-Phase Superlattice Pr–Mg–Ni-Based Hydrogen Storage Alloys — 28
2.2.1	The Preparation of the Single-Phase Superlattice Pr–Mg–Ni-Based Hydrogen Storage Alloys — 28
2.2.2	The Crystal Structure of the Single-Phase Superlattice Pr–Mg–Ni-Based Hydrogen Storage Alloys — 29
2.2.3	The Formation Mechanism of the Single-Phase Superlattice Pr–Mg–Ni-Based Hydrogen Storage Alloys — 32
2.2.4	The Electrochemical Characteristics of the Single-Phase Superlattice Pr–Mg–Ni-Based Hydrogen Storage Alloys — 32
2.3	The Preparation and Characteristics in Electrochemical and Gaseous Hydrogen Storage of the PuNi ₃ -Type Single-Phase Superlattice Nd–Mg–Ni-Based Hydrogen Storage Alloys — 40
2.3.1	The Preparation of the PuNi ₃ -Type Single-Phase Superlattice Nd–Mg–Ni-Based Hydrogen Storage Alloys — 40
2.3.2	The Crystal Structure of the Single-Phase Superlattice Nd–Mg–Ni-Based Hydrogen Storage Alloys — 40

2.3.3	The Electrochemical Characteristics of the Single-Phase Superlattice Nd–Mg–Ni-Based Hydrogen Storage Alloys — 42
2.4	The Preparation and Characteristics in Electrochemical and Gaseous Hydrogen Storage of the Gd_2Co_7 -Type Single-Phase Superlattice Sm–Mg–Ni-Based Hydrogen Storage Alloys — 53
2.4.1	The Preparation of the Gd_2Co_7 -Type Single-Phase Superlattice Sm–Mg–Ni-Based Hydrogen Storage Alloys — 53
2.4.2	The Crystal Structure of the Gd_2Co_7 -Type Single-Phase Superlattice Sm–Mg–Ni-Based Hydrogen Storage Alloys — 54
2.4.3	The Gaseous Hydrogen Storage Properties of the Gd_2Co_7 -Type Single-Phase Superlattice Sm–Mg–Ni-Based Hydrogen Storage Alloys — 55
2.4.4	The Hydrogen Storage Capacity Degradation of the Gd_2Co_7 -Type Single-Phase Superlattice Sm–Mg–Ni-Based Hydrogen Storage Alloys — 61
2.4.5	The Hydrogen Storage Capacity Degradation of the Gd_2Co_7 -Type Single-Phase Superlattice Sm–Mg–Ni-Based Hydrogen Storage Alloys — 65
2.4.6	The Effect of Hydrogen Absorption and Desorption on Lattice Structure of the Gd_2Co_7 -Type Single-Phase Superlattice Sm–Mg–Ni-Based Hydrogen Storage Alloys — 69
2.5	Conclusions — 70
	References — 72
3	Effect of Multiphase Structures on Electrochemical Properties of the Superlattice RE–Mg–Ni-Based Hydrogen Storage Alloys — 76
3.1	The Preparation Method of the Multiphase Structure RE–Mg–Ni-Based Alloys — 77
3.2	The Interaction between AB_3 -Type Phase Structure and Other Superlattice Structures — 79
3.2.1	The Interaction between A_2B_7 -Type Phase Structure and A_5B_{19} -Type Phase Structures — 79
3.3	The Interaction between A_2B_7 -Type Phase Structure and Other Superlattice Structures — 86
3.3.1	The Interaction between A_2B_7 -Type Phase Structure and A_5B_{19} -Type Phase Structures — 87
3.3.2	The Interaction between A_2B_7 -Type Phase Structure and AB_5 -Type Phase Structures — 99
3.4	The Interaction between A_5B_{19} -Type Phase Structure and Other Superlattice Structures — 110
3.4.1	The Interaction between A_5B_{19} -Type Phase Structure and A_2B_7 -Type Superlattice Structures and AB_5 -Type Phase — 110
3.5	Conclusions — 120
	References — 121

4	Effect of Element Composition on Microstructure and Electrochemical Characteristics of RE–Mg–Ni-Based Hydrogen Storage Alloys — 124
4.1	Effect of Mg Element on the Phase Composition and Electrochemical Performances — 127
4.1.1	Phase Composition and Electrochemical Performances of $\text{La}_{2-x}\text{Mg}_x\text{Ni}_7$ ($x = 0.40\text{--}0.60$) Alloy — 127
4.1.2	Phase Composition and Electrochemical Performances of $\text{Pr}_{3-x}\text{Mg}_x\text{Ni}_9$ ($x = 0.45\text{--}1.2$) Alloys — 136
4.1.3	Phase Composition and Electrochemical Performances of $\text{Nd}_{1-x}\text{Mg}_x\text{Ni}_{2.8}$ ($x = 0.10\text{--}0.50$) Alloys — 141
4.2	Effect of Rare Earth Elements on the Phase Composition and Electrochemical Performances — 149
4.2.1	Phase Structure and Electrochemical Performances of $\text{La}_{0.8-x}\text{Pr}_x\text{Mg}_{0.2}\text{Ni}_{3.4}\text{Al}_{0.1}$ ($x = 0, 0.1, 0.2$ and 0.3) Alloys — 149
4.2.2	Phase Structure and Electrochemical Performances of $\text{La}_{0.75-x}\text{Nd}_x\text{Mg}_{0.25}\text{Ni}_{3.3}$ ($x = 0, 0.15$) Alloys — 158
4.3	Effect of Transition Elements on the Phase Composition and Electrochemical Performances — 164
4.3.1	Phase Structure and Electrochemical Performances of $\text{La}_{0.80}\text{Mg}_{0.20}\text{Ni}_{2.95}\text{Co}_{0.70-x}\text{Al}_x$ ($x = 0, 0.05, 0.10, 0.15$) Alloys — 164
4.3.2	Phase Structure and Electrochemical Performances of $\text{La}_{0.74}\text{Mg}_{0.26}\text{Ni}_{2.55}\text{Co}_{0.65-x}\text{Fe}_x$ ($x = 0, 0.10, 0.20, 0.30$) Alloys — 177
4.4	Conclusions — 182
	References — 184
5	Effect of Surface Treatment on Electrochemical Characteristics of RE–Mg–Ni-Based Hydrogen Storage Alloys — 188
5.1	Additive in Negative Electrode — 189
5.1.1	Reactive Additive: CuO — 189
5.1.2	Non-reactive Additive: TiO_2 , Er_2O_3 and ZnO — 194
5.2	Electrodeposition on Negative Electrode Materials — 198
5.2.1	Electrodeposition on Electrodes — 198
5.2.2	Electrodeposition on Alloy Powders — 204
5.3	Electroless Plating on Negative Electrode Materials — 212
5.3.1	Metallic Coating — 212
5.3.2	Polymer Modification — 218
5.4	Conclusions — 226
	References — 228
6	Outlook and Challenges of RE–Mg–Ni-Based Alloys as Negative Electrode Materials for Ni/MH Batteries — 231