Contents

Pretac	e —— v
List of	contributing authors — xix
Patrici	a C. Dos Santos and Dennis R. Dean
1	A retrospective on the discovery of [Fe-S] cluster biosynthetic
	machineries in Azotobacter vinelandii — 1
1.1	Introduction —— 1
1.2	An introduction to nitrogenase — 3
1.3	Approaches to identify gene-product and product-function relationships —— 7
1.4	FeMoco and development of the scaffold hypothesis for complex [Fe-S] cluster formation —— 7
1.5	An approach for the analysis of <i>nif</i> gene product function — 10
1.5.1	Phenotypes associated with loss of <i>NifS</i> or <i>NifU</i> function indicate their involvement in nitrogenase-associated [Fe-S] cluster formation —— 11
1.5.2	NifS is a cysteine desulfurase —— 12
1.5.3	Extension of the scaffold hypothesis to NifU function —— 16
1.5.4	Discovery of <i>isc</i> system for [Fe-S] cluster formation and functional cross-talk among [Fe-S] cluster biosynthetic systems —— 22
1.6	The lsc system is essential in A. vinelandii —— 24
1.7	There is limited functional cross-talk between the Nif and Isc
	systems —— 25
1.8	Closing remarks —— 26
	Acknowledgments —— 26
	References —— 26
Lauren	t Aussel, Sylvia Chareyre, Yohann Duverger, Benjamin Ezraty, Allison
Hugue	not, Pierre Mandin, Béatrice Py, Jordi Zamarreno, and Frédéric Barras
2	The ISC system and the different facets of Fe-S biology in bacteria —— 31
2.1	Introduction —— 31
2.2	The ISC system, the general housekeeping system for Fe-S biogenesis —— 31
2.2.1	Description and function —— 31
2.2.2	The putative role of Fxn in early Fe-S biogenesis by the ISC system —— 34
2.2.3	Stress represses ISC functions and enhances SUF pathway activity —— 34
2.3	Genetic regulation of ISC synthesis —— 35
2.4	The role of the ISC system in antibiotic resistance —— 36

2.4.1	The proton motive force link —— 36
2.4.2	The DNA repair connection —— 38
2.5	The role of the ISC system in bacterial pathogenesis —— 38
2.6	Conclusions — 40
	References —— 41
F. Wayı	ne Outten
3	A stress-responsive Fe-S cluster biogenesis system in bacteria – the suf
	operon of Gammaproteobacteria —— 47
3.1	Introduction to Fe-S cluster biogenesis —— 47
3.2	Sulfur trafficking for Fe-S cluster biogenesis — 48
3.3	Iron donation for Fe-S cluster biogenesis —— 49
3.4	Fe-S cluster assembly and trafficking —— 51
3.5	Iron and oxidative stress are intimately intertwined —— 53
3.6	Stress-response Fe-S cluster biogenesis in E. coli — 56
3.7	Sulfur trafficking in the stress-response Suf pathway——57
3.8	Stress-responsive iron donation for the Suf pathway——61
3.8.1	SufD 61
3.8.2	Iron storage proteins —— 63
3.8.3	Other candidates — 64
3.9	Unanswered questions about Suf and Isc roles in E. coli — 65
	Acknowledgment — 65
	References —— 66
Erin L.	Mettert, Nicole T. Perna, and Patricia J. Kiley
4	Sensing the cellular Fe-S cluster demand: a structural, functional, and
	phylogenetic overview of <i>Escherichia coli</i> IscR —— 75
4.1	Introduction — 75
4.2	General properties of IscR — 76
4.3	[2Fe-2S]-IscR represses Isc expression <i>via</i> a negative
	feedback loop — 78
4.4	IscR adjusts synthesis of the Isc pathway based on the cellular Fe-S
	demand — 80
4.5	IscR has a global role in maintaining Fe-S homeostasis —— 82
4.6	Fe-S cluster ligation broadens DNA site specificity for IscR — 83
4.7	Phylogenetic analysis of IscR —— 85
4.8	Binding to two classes of DNA sites allows IscR to differentially regulate
	transcription in response to $0_2 - 89$
4.9	Roles of IscR beyond Fe-S homeostasis —— 91
4.10	Additional aspects of IscR regulation —— 91
4.11	Summary —— 92
	Acknowledgments — 92
	References —— 92

Patricia C. Dos Santos	
5	Fe-S assembly in Gram-positive bacteria —— 97
5.1	Introduction —— 97
5.2	Fe-S proteins in Gram-positive bacteria —— 97
5.3	Fe-S cluster assembly orthologous proteins —— 99
5.3.1	Clostridia-ISC system —— 99
5.3.2	Actinobacteria-SUF —— 104
5.3.3	Bacilli-SUF —— 105
5.4	Concluding remarks and remaining questions —— 112
	References —— 113
Debkun	nar Pain and Andrew Dancis
6	Fe-S cluster assembly and regulation in yeast —— 117
6.1	Introduction —— 117
6.2	Yeast and Fe-S cluster assembly – evolutionary considerations —— 117
6.2.1	Nfs1 and the surprise of Isd11 —— 118
6.2.2	Scaffold proteins in yeast mitochondria —— 119
6.2.3	Frataxin's roles throughout evolution —— 120
6.2.4	Ssq1 is a specialized Hsp70 chaperone arising
0.2.7	by convergent evolution —— 121
6.2.5	Atm1 and CIA components —— 121
6.2.6	Yeast components are conserved with their human
0.2.0	counterparts — 122
6.2.7	Yeast Fe-S cluster assembly mutants modeling aspects of
0.2.,	human diseases — 123
6.3	Yeast genetic screens pointing to the Fe-S cluster assembly
	apparatus —— 124
6.3.1	Misregulation of iron uptake —— 124
6.3.2	Suppression of Δ <i>sod1</i> amino acid auxotrophies —— 125
6.3.3	tRNA modification and the <i>SPL1-1</i> allele — 126
6.3.4	tRNA thiolation and resistance to killer toxin —— 126
6.3.5	Cytoplasmic aconitase maturation —— 126
6.3.6	Ribosome assembly —— 127
6.3.7	Synthetic lethality with the <i>pol3-13</i> allele —— 127
6.3.8	Factors needed for Yap5 response to high iron —— 128
6.3.9	Screening of essential genes coding for mitochondrial proteins — 129
6.4	Mitochondrial Fe-S cluster assembly —— 129
6.4.1	Mitochondrial cysteine desulfurase —— 131
6.4.2	Formation of the Isu Fe-S cluster intermediate in mitochondria —— 135
6.4.3	Roles of frataxin —— 136
6.4.4	Bypass mutation in Isu —— 137
6.4.5	Transfer of the mitochondrial Isu Fe-S cluster intermediate —— 138
6.4.6	Role of Grx5 —— 138

6.4.7	The switch between cluster synthesis and cluster transfer —— 139
6.5	Role of glutathione —— 140
6.5.1	Glutathione and monothiol glutaredoxins in mitochondria —— 141
6.5.2	Glutathione and monothiol glutaredoxins Grx3 and Grx4
	outside of mitochondria —— 142
6.6	Role of Atm1, an ABC transporter of the mitochondrial
	inner membrane —— 143
6.6.1	Cells lacking Atm1 lose mtDNA —— 144
6.7	Relationship between Fe-S cluster biogenesis
	and iron homeostasis —— 146
6.8	Conclusion and missing pieces —— 152
	Acknowledgments 153
	References —— 153
Carvn I	E. Outten
7	The role of Fe-S clusters in regulation of yeast iron homeostasis —— 161
, 7.1	Introduction — 161
7.2	Iron acquisition and trafficking in yeast —— 161
7.3	Regulation of iron homeostasis in <i>S. cerevisiae</i> —— 164
7.3.1	Aft1/Aft2 low-iron transcriptional regulators and
7.5.1	target genes —— 164
7.3.2	Yap5 high-iron transcriptional regulator and target genes —— 166
7.3.3	Links between mitochondrial Fe-S cluster biogenesis, the Grx3/Grx4/
7.5.5	Fra2/Fra1 signaling pathway, and Aft1/Aft2 regulation —— 167
7.3.4	Fe-S cluster binding by Grx3/4 and Fra2 is important for their function
,.,,	in <i>S. cerevisiae</i> iron regulation —— 168
7.3.5	Working model for Fe-dependent regulation of Aft1/2 <i>via</i> the Fra1/Fra2
7.5.5	Grx3/Grx4 signaling pathway — 170
7.3.6	Yap5 regulation and mitochondrial Fe-S cluster biogenesis —— 172
7.4	Regulation of iron homeostasis in <i>S. pombe</i> —— 173
7.4.1	Fep1 and Php4 transcriptional repressors and target genes — 173
7.4.2	Roles for Grx4 in regulation of Fep1 and Php4 activity —— 176
7.4.3	Molecular basis of iron-dependent control of Fep1 activity —— 178
7.4.4	Molecular basis of iron-dependent control of Php4 activity —— 179
7.5	Summary —— 180
	Acknowledgments —— 181
	References —— 181
Tracey	Rouault
8	Biogenesis of Fe-S proteins in mammals —— 187
8.1	Introduction —— 187
8.2	The Fe-S regulatory switch of IRP1 —— 187

8.3	IRP2, a highly homologous gene, also posttranscriptionally
	regulates iron metabolism, but iron sensing occurs through
	regulation of its degradation rather than through a Fe-S switch
	mechanism —— 191
8.4	Identification of the mammalian cysteine desulfurase and
	two scaffold proteins: implications for compartmentalization of the
	process —— 192
8.5	Sequential steps in Fe-S biogenesis – an initial Fe-S assembly process
	on a scaffold, followed by Fe-S transfer to recipient proteins, aided by a
	chaperone-cochaperone system —— 193
8.6	Mitochondrial iron overload in response to defects in Fe-S biogenesis
	raises important questions about how mitochondrial iron homeostasis
	is regulated —— 196
8.7	Perspectives and future directions —— 197
	References —— 198
Nunzia	ata Maio and Tracey A. Rouault
9	Delivery of iron-sulfur clusters to recipient proteins: the role of chaperone
	and cochaperone proteins —— 205
9.1	Introduction —— 205
9.2	A specialized chaperone-cochaperone system ensures efficient Fe-S
	cluster delivery —— 205
9.3	Transfer of Fe-S clusters to recipient proteins: the
	ATPase cycle —— 210
9.4	The mammalian Fe-S transfer system —— 212
9.5	Recent progress: identification of molecular features that guide
	selection of recipient Fe-S proteins by the Fe-S transfer
	complex —— 215
9.6	SDHAF1, a member of the LYR motif family, assists Fe-S cluster
	incorporation into SDHB —— 218
9.7	Potential role of LYR motif proteins in Fe-S cluster
	biogenesis —— 218
9.8	Molecular features of peptides containing the LYR motif that
	affect binding to HSC20 —— 220
9.9	Conclusions and future perspectives —— 220
	References —— 221
Wing L	lang Tong
************	idiis iviis

10	iron-sultur proteins and human diseases —— 227
10.1	Introduction —— 227
10.2	Oxidative susceptibility of Fe-S proteins —— 228

10.2.1	Aconitases: targets of oxidative stress in disease and aging —— 230
10.3	Diseases associated with genetic defects in
	Fe-S proteins —— 234
10.3.1	Mitochondrial respiratory complexes and human diseases — 234
10.3.2	FECH deficiency causes erythropoietic
	protoporhyria (MIM 177000) — 238
10.3.3	DNA repair Fe-S proteins and human disorders —— 239
10.3.4	Diseases associated with genetic defects in radical
	S-adenosylmethionine enzymes —— 242
10.3.5	DNA polymerase delta 1 (POLD1) in mandibular hypoplasia,
	deafness, progeroid features, and lipodystrophy (MDPL)
	and cancer —— 245
10. 3.6	CDGSH iron sulfur domain (CISD) proteins 245
10.4	Diseases associated with genetic defects in Fe-S cluster
	biogenesis — 248
10.4.1	A GAA trinucleotide repeat expansion in FXN is the major
	cause of the neurodegenerative disorder Friedreich
	ataxia —— 250
10.4.2	Mutations in ABCB7 cause x-linked sideroblastic anemia
	with ataxia —— 255
10.4.3	Mutations in GLRX 5 cause an autosomal recessive
	pyridoxine-refractory sideroblastic anemia —— 256
10.4.4	Mutations in ISCU cause myopathy with lactic
	acidosis (MIM 255125) 258
10.4.5	NUBPL mutations cause childhood-onset mitochondrial
	encephalomyopathy and respiratory complex I
	deficiency (MIM252010) —— 261
10.4.6	Mutations in NFU1 cause multiple mitochondrial dysfunctions
	syndrome 1 (MIM 605711) —— 262
10.4.7	Mutations in BOLA3 cause MMDS 2 (MIM 614299) —— 264
10.4.8	IBA57 deficiency causes severe myopathy and
	encephalopathy —— 265
10.4.9	A mutation in ISD11 causes deficiencies of
	respiratory complexes —— 266
10.4.10	Infantile mitochondrial complex II/III deficiency (IMC23D)
	caused by a missense mutation in NFS1 —— 267
10.4.11	Mutations in HSPA9 in patients with congenital sideroblastic
	anemia and myelodysplastic syndrome —— 268
10.5	Fe-S cluster biogenesis and iron homeostasis —— 269
10.6	Therapeutic strategies —— 270
	Acknowledgments —— 272
	References —— 272

Simon	A.B. Knight and Robert B. Wilson
11	Friedreich ataxia —— 307
11.1	Introduction —— 307
11.2	Clinical presentation and genetics —— 308
11.2.1	Signs and symptoms —— 308
11.2.2	Identification of the disease gene —— 308
11.2.3	Mitochondrial dysfunction —— 309
11.3	Iron metabolism and dysregulation —— 309
11.3.1	Mitochondrial iron accumulation —— 309
11.3.2	Oxidative stress —— 310
11.3.3	ISC biogenesis —— 310
11.3.4	Precise function of frataxin —— 311
11.3.5	Cellular consequences of frataxin deficiency —— 312
11.4	Summary —— 313
	References —— 314
Silke L	eimkühler
12	Connecting the biosynthesis of the molybdenum cofactor,
	Fe-S clusters, and tRNA thiolation in humans —— 319
12.1	Introduction — 319
12.2	Pathways for the formation of Moco and thiolated tRNAs
	in humans —— 321
12.2.1	Moco biosynthesis in mammals —— 321
12.2.2	The role of tRNA thiolation in the cell —— 331
12.3	The connection between sulfur-containing biomolecules and their
	distribution in different compartments in the cell —— 333
12.3.1	Sulfur transfer in mitochondria —— 333
12.3.2	Sulfur transfer in the cytosol —— 335
12.3.3	Role of NFS1, ISD11, URM1, and MOCS2A in the nucleus — 338
	Acknowledgments —— 340
	References — 340
Kerstin	Gari
13	Iron-sulphur proteins and genome stability —— 347
13.1	The importance of genome stability — 347
13.2	Link between iron-sulphur cluster biogenesis and genome
13.2	stability — 348
13.3	FeS proteins in DNA replication —— 350
13.3.1	DNA primase and DNA polymerase alpha —— 351
13.3.2	DNA polymerases delta and epsilon —— 352
13.3.3	DNA2 —— 353
13.4	FeS proteins in DNA repair —— 354
13.4.1	DNA glycosylases —— 355
	5·/ /

13.4.2 13.5	The Rad3 family of helicases —— 357 Outlook —— 361
-505	References — 361
Roland I	Lill, Marta A. Uzarska and James Wohlschlegel
14	Eukaryotic iron-sulfur protein biogenesis and
	its role in maintaining genomic integrity —— 369
14.1	Introduction —— 369
14.2	Biogenesis of mitochondrial Fe-S proteins —— 374
14.2.1	Step 1: <i>De novo</i> Fe-S cluster assembly on the Isu1 scaffold protein —— 374
14.2.2	Step 2: Chaperone-dependent release of the Isu1-bound Fe-S cluster —— 375
14.2.3	Step 3: Late-acting ISC assembly proteins function
- 15	in [4Fe-4S] cluster synthesis and in target-specific Fe-S
	cluster insertion — 377
14.3	The role of the mitochondrial ABC transporter Atm1 in the
	biogenesis of cytosolic and nuclear Fe-S proteins and in iron
	regulation —— 380
14.4	The role of the CIA machinery in the biogenesis of cytosolic and
	nuclear Fe-S proteins —— 382
14.4.1	Step 1: The synthesis of a [4Fe-4S] on the scaffold complex
	Cfd1-Nbp35 382
14.4.2	Step 2: Transfer of the [4Fe-4S] cluster to target
	apo-proteins —— 382
14.5	Specialized functions of the human CIA-targeting
	complex components —— 383
14.5.1	Dedicated biogenesis of cytosolic and nuclear Fe-S proteins —— 383
14.5.2	The dual role of CIA2A in iron homeostasis —— 384
14.6	Fe-S protein assembly and the maintenance of
	genomic stability —— 385
14.6.1	Late-acting CIA factors in DNA metabolism —— 386
14.6.2	XPD and the Rad3 family of DNA helicases —— 387
14.6.3	Fe-S proteins involved in DNA replication —— 388
14.6.4	DNA glycosylases as Fe-S proteins —— 389
14.7	Biochemical functions of Fe-S clusters in DNA metabolic enzymes —— 389
14.8	Interplay among Fe-S proteins, genome stability, and
	tumorigenesis —— 391
14.9	Summary —— 393
	Acknowledgments — 394
	References — 394

Phillip L. B	artels, Elizabeth O'Brien, and Jacqueline K. Barton
15 DN	IA signaling by iron-sulfur cluster proteins —— 405
15.1	Introduction —— 405
15.2	DNA-mediated signaling in BER —— 405
15.3	Assessing redox signaling by [4Fe-4S] proteins in vitro
	and <i>in vivo</i> —— 411
15.4	DNA CT in other repair pathways —— 415
15.5	A role for CT in eukaryotic DNA replication? —— 417
15.6	DNA-binding [4Fe-4S] proteins in human disease —— 419
15.7	Conclusions —— 420
	Acknowledgments —— 420
	References —— 421
Hong Ye	
_	on-sulfur cluster assembly in plants —— 425
16.1	Introduction —— 425
16.2	Iron uptake, translocation, and distribution —— 425
16.3	Fe-S cluster assembly —— 427
16.3.1	SUF system in plastids —— 429
16.3.2	ISC system in mitochondria —— 432
16.3.3	CIA system in cytosol —— 434
16.4	Regulation of cellular iron homeostasis by Fe-S cluster
	biosynthesis —— 436
16.5	Conservation of Fe-S cluster assembly genes across the
	green lineage —— 436
16.6	Potential significance to agriculture —— 438
	Acknowledgments — 439
	References —— 439
Fric S. Boy	d, Gerrit J. Schut, Eric M. Shepard, Joan B. Broderick,
•	W. Adams and John W. Peters
	igin and evolution of Fe-S proteins and enzymes —— 445
17.1	Introduction —— 445
17.2	Fe-S chemistry and the origin of life —— 445
17.3	The ubiquity and antiquity of biological Fe-S clusters —— 448
17.4	Early energy conversion —— 452
17.5	Evolution of complex Fe-S cluster containing proteins —— 456
17.6	The path from minerals to Fe-S proteins and enzymes —— 458
	References — 459

Index — 463