Contents

Preface — V
List of Contributors XIV
Editor Biography —— XVI

Ben-Guang	Rong
-----------	------

1	Introduction to basic concepts and elements in process synthesis and
	process intensification — 1
1.1	Introduction — 1
1.2	Basic elements in synthesis and intensification
	of distillation systems —— 3
1.3	Basic facets of process synthesis —— 4
1.3.1	Introduction to process synthesis —— 4
1.3.2	Two approaches for finding alternatives in process synthesis:
	pure synthesis versus practical synthesis —— 7
1.4	Basic facets of process intensification —— 9
1.5	Evaluation indicators for PS and PI works —— 11
1.6	Concepts of process synthesis work and process intensification
	work 12
1.7	Conceptual design of process and equipment —— 13
1.8	Concepts of the system and technical system —— 14
1.8.1	System concept —— 15
1.8.2	Technical system concept —— 16
1.9	Software and hardware systems for a technical system —— 18
1.9.1	Software elements —— 18
1.9.2	Hardware elements —— 19
1.9.3	Emergence of the technical system —— 21
1.10	Triple parties in the working process of the methodology: the subject,
	object, and scientific method —— 21
1.11	Synthesis and analysis as basic scientific methods —— 23
1.11.1	Synthesis-dominated versus analysis-dominated methods —— 23
1.11.2	Synthesis and analysis as basic methods in PS and PI works —— 25
1.11.3	Process synthesis versus process analysis —— 26
1.12	Systematic procedure as an element —— 28
1.12.1	General procedures for process synthesis —— 29
1.12.2	Specific procedures for PS and PI —— 29
1.13	Concept of the technical system as a technology whole —— 30
1.14	Example: the basic elements addressed in distillation intensification for
	the dividing-wall column subspace —— 34
1.15	Conclusions — 39
1.16	Bibliography —— 39

Ben-Guang Rong

2	Process synthesis and process intensification for multicomponent
	distillation systems – systematic methodology —— 41
2.1	Introduction —— 41
2.2	Problem definition —— 44
2.2.1	Multicomponent mixtures —— 44
2.2.2	Product specifications —— 45
2.3	Dominant criteria for evaluation of a distillation system —— 45
2.4	Basic concepts for multicomponent distillations —— 45
2.4.1	Sharp and nonsharp splits —— 45
2.4.2	Simple distillation column —— 46
2.5	Basic software and hardware elements for a distillation system —— 47
2.5.1	Software elements —— 47
2.5.2	Hardware elements —— 49
2.6	Distinct separation sequences —— 50
2.7	Subspace of sharp sequence configurations —— 52
2.8	Subspace of nonsharp sequence configurations —— 54
2.9	Subspace of the original thermally coupled configurations —— 62
2.10	Subspace of the thermodynamically equivalent structures —— 68
2.11	Intensified distillation systems with fewer columns —— 74
2.11.1	Subspace of the intensified simple column configurations —— 75
2.11.2	Subspace of intensified distillation systems —— 82
2.12	Subspace of dividing-wall columns —— 90
2.12.1	DWCs from thermodynamically equivalent structures with side
	columns — 91
2.12.2	DWCs from prefractionation columns —— 97
2.13	Summary and remarks —— 103
2.13.1	Primary results —— 103
2.13.2	Distinct subspaces for multicomponent distillation —— 104
2.13.3	About the subspaces and their relationships —— 104
2.13.4	About the method scopes of the subspaces for process synthesis and
	process intensification —— 105
2.13.5	About the mechanisms and systematic procedures —— 105
2.13.6	Common elements of the methods for distillation subspaces —— 105
2.13.7	About further studies and applications —— 106
2.14	Conclusions —— 107
2.15	Nomenclature —— 107
2.16	Bibliography —— 108

Adriana Freites Aguilera, Pasi Tolvanen, Victor Sifontes Herrera, Jean-Noël Tourvielle, Sébastien Leveneur, and Tapio Salmi

3	Reaction intensification by microwave and ultrasound techniques in
	chemical multiphase systems —— 111
3.1	Microwave irradiation —— 111
3.1.1	Background —— 111
3.1.2	Heating mechanisms —— 113
3.1.3	Dielectric loss and permittivity —— 114
3.1.4	Selective heating —— 115
3.1.5	Case 1: conventional heating versus microwaves for epoxidation
	of vegetable oils —— 117
3.1.6	Case 2: effect of resonant microwave fields on temperature distribution
	in time and space —— 119
3.2	Process intensification by ultrasound: sonochemistry —— 124
3.2.1	What is ultrasound? —— 124
3.2.2	Ultrasonification techniques —— 126
3.2.3	Case 1: catalyst activation by ultrasonification —— 127
3.2.4	Ultrasonification of starch —— 135
3.3	Conclusions —— 138
3.4	Bibliography —— 138
Anton A	a. Kiss
4	Process intensification by reactive distillation —— 143
4.1	Introduction —— 143
4.2	Principles of reactive distillation —— 144
4.3	Modeling reactive distillation —— 147
4.3.1	Residue curve map —— 149
4.4	Design and control —— 152
4.5	Reactive distillation equipment —— 161
4.6	Applications of reactive distillation —— 163
4.7	Case study: biodiesel production by heat-integrated reactive
	distillation —— 163
4.8	Case study: fatty esters synthesis by dual reactive distillation —— 169
4.9	Case study: industrial reactive distillation process for methyl acetate
	production —— 173
4.10	Concluding remarks —— 176
4.11	Bibliography —— 177
Massim	iliano Errico
5	Process synthesis and intensification of hybrid separations —— 182
5.1	Introduction —— 182
5.2	Pervaporation-assisted distillation —— 185

5.2.1	Hybrid distillation/pervaporation processes for bioethanol purification —— 189
5.2.2	Hybrid distillation/pervaporation processes for biobutanol
J	purification —— 192
5.2.3	Hybrid distillation/pervaporation processes: final remarks —— 194
5.3	Liquid-liquid extraction-assisted distillation —— 195
5.3.1	Hybrid liquid-liquid extraction/distillation processes
	for bioethanol purification —— 197
5.3.2	Hybrid liquid-liquid extraction/distillation processes
	for biobutanol purification —— 199
5.3.3	Hybrid liquid-liquid extraction/distillation processes: final
	remarks —— 201
5.4	Synthesis, design, and optimization of alternative hybrid configurations
	for biobutanol separation —— 202
5.5	Conclusions — 207
5.6	Bibliography —— 208
Petri U	usi-Kyyny, Saeed Mardani, and Ville Alopaeus
6	Process intensification for microdistillation using the equipment
	miniaturization approach —— 213
6.1	Introduction —— 213
6.2	Development of small-scale distillation units —— 217
6.2.1	Reflux ratio control —— 219
6.2.2	Reboiler types —— 220
6.3	Distillation column structures —— 221
6.3.1	Brass column with heat pipe type of operation —— 221
6.3.2	Stainless steel plate type of column —— 222
6.3.3	Modular copper column —— 223
6.3.4	Laser-welded square column —— 224
6.3.5	3D-printed coiled compact distillation column —— 225
6.3.6	3D-printed modular coiled distillation column —— 226
6.3.7	Conclusion of distillation column structure review —— 228
6.4	Metal foam as a packing material —— 229
6.5	3D-printed packings —— 231
6.6	Application of microscale distillation for small-scale piloting —— 231
6.6.1	Distillation model —— 233
6.6.2	Process model —— 233
6.6.3	Apparatus and instrumentation —— 234
6.6.4	Impurity accumulation test —— 236
6.6.5	Conclusions from the small-scale pilot test runs —— 236
6.7	Conclusions —— 238
6.8	Rihlingraphy —— 239

Carlo Edgar Torres-Ortega and Ben-Guang Rong 7 Integrated hiofuels process synthesis: inte

Bibliography —— 285

7.9

/	integrated dioruels process synthesis: integration between dioethanol and
	biodiesel processes —— 241
7.1	Introduction —— 241
7.1.1	Energy world consumption projections —— 241
7.1.2	Worldwide transportation sector —— 242
7.1.3	Biofuel potential —— 243
7.1.4	Rural and industrial market and development —— 244
7.1.5	Environmental situation —— 245
7.1.6	Fuel properties of bioethanol and biodiesel —— 246
7.2	Lignocellulosic bioethanol production process —— 247
7.2.1	Biomass handling —— 248
7.2.2	Pretreatment of lignocellulosic materials —— 250
7.2.3	Hydrolysis of cellulose and hemicellulose, and fermentation strategies —— 250
7.2.4	Separation and dehydration of bioethanol —— 251
7.3	Fatty acid ethyl esters: biodiesel production process —— 253
7.3.1	Extraction and conversion of oils —— 255
7.3.2	Conversion of oil into alkyl esters —— 255
7.3.3	Separation and purification of biodiesel — 257
7.3.4	New uses for glycerol —— 258
7.4	Integration between bioethanol and biodiesel processes — 258
7.4.1	Mass integration —— 260
7.4.2	Energy integration —— 261
7.4.3	Integration between units → intensification —— 262
7.5	Methodological framework for synthesis and intensification — 263
7.5.1	First stage: formulating and solving the superstructure synthesis problem through MINLP —— 265
7.5.2	Second stage: intensification through recombination of column sections —— 267
7.6	Case study: integrated lignocellulosic bioethanol and biodiesel process synthesis —— 269
7.6.1	Problem description for superstructure optimization —— 270
7.6.2	Superstructure setting and MINLP solution —— 271
7.6.3	Synthesis-intensification: column section methodology —— 276
7.6.4	Evaluation with the process simulator —— 279
7.7	Discussions — 283
7.8	Conclusions —— 284

Chandrakant R. Malwade, Haiyan Qu, Ben-Guang Rong, and Lars P. Christensen	
8	Process synthesis for natural products from plants based on PAT
	methodology —— 290
8.1	Introduction —— 290
8.1.1	Natural products from plants —— 290
8.1.2	Need for recovery of natural products from plants —— 294
8.1.3	Challenges in recovery of natural products from plants —— 295
8.1.4	Process synthesis for separation of multicomponent mixtures —— 297
8.2	Process synthesis for recovery of natural products from plants —— 299
8.2.1	Process analytical technology —— 300
8.2.2	PAT-based methodology for recovery of natural products from
	plants —— 304
8.3	Recovery of artemisinin from Artemisia annua – a case study — 309
8.3.1	Generation of initial process flowsheet —— 310
8.3.2	Evaluation of initial process flowsheet —— 316
8.3.3	Measurement of solid-liquid equilibrium of artemisinin
	and impact of impurities —— 317
8.3.4	Generation of improved process flowsheet —— 319
8.4	Conclusions —— 320
8.5	Bibliography —— 322
Vufai W	ang and Xiao Feng
9	Process synthesis for energy efficiency based on the pinch analysis
	approach —— 325
9.1	The hierarchy of process synthesis —— 325
9.2	Heat exchanger networks —— 326
9.2.1	Pinch and energy targets —— 326
9.2.2	Capital cost-related targets —— 330
9.2.3	Synthesis of HENs —— 331
9.2.4	HEN synthesis example —— 333
9.2.5	Retrofit of HENs —— 336
9.3	Utility selection —— 340
9.3.1	Grand composite curve —— 340
9.3.2	Utility selection —— 342
9.3.3	Combined heat and power generation —— 344
9.3.4	Integration of heat pumps —— 346
9.4	Heat integration of reactors and distillation columns —— 348
9.4.1	Appropriate placement of reactors — 348
9.4.2	Heat integration characteristics of a single distillation column —— 350
9.4.3	Heat integration of a distillation system —— 350
9.4.4	Appropriate placement of distillation column —— 352

9.4.5	Use of the grand composite curve for heat integration of distillation
	column —— 354
9.5	Heat integration across plants —— 356
9.5.1	Total site profiles —— 357
9.5.2	Direct and indirect heat integration —— 358
9.5.3	Direct heat integration —— 359
9.5.4	Indirect heat integration —— 359
9.6	An industrial case study —— 361
9.6.1	Procedure for energy integration for total site system retrofit —— 361
9.6.2	Basic data for the case study —— 362
9.6.3	HEN subsystem integration —— 364
9.6.4	Separation subsystem integration and its coordination with HEN
	subsystem —— 365
9.6.5	Coordination of HEN subsystem and utility subsystem —— 366
9.6.6	Steam subsystem retrofit —— 367
9.7	Concluding remarks —— 368
9.8	Bibliography —— 369
Juan Gal	briel Segovia-Hernández, Fernando Israel Gómez-Castro, José Antonio
Vázquez	-Castillo, Gabriel Contreras-Zarazúa, and Claudia Gutiérrez Antonio
10	Process synthesis and intensification by integration between process
	design and control —— 370
10.1	Introduction —— 370
10.2	Process synthesis and integration of process design and control — 372
10.3	Closed-loop analysis —— 376
10.3.1	Case study 1: reactive distillation to produce diphenyl carbonate —— 377
10.3.2	Case study 2: thermally coupled distillation columns for the separation
	of a multicomponent mixture —— 392
10.4	Conclusions —— 400
10.5	Bibliography —— 400

Index ---- 405