

Table of Contents

Preface

Table of Contents	V-VIII
Introduction	1
1. Overview of experimental models of the kidney	5
1.1. Historical aspects of the perfusion of isolated kidneys	5
1.2. Oxygen supply – a critical parameter	7
2. General principles of kidney perfusion	8
2.1. Single-pass (once-through) perfusion	9
2.2. Recirculation	9
2.3. Recirculation and regeneration of the perfusate by dialysis	11
2.4. Reperfusion of an anatomically perfusion-fixed kidney as a model	11
3. Advantages and general limitations of in-vitro perfusion of the mammalian kidney	12
3.1. Flow-constant versus pressure-constant perfusion	18
3.2. Concentrating and diluting capacity	18
3.3. The permeability of albumin in the IPRK and the “repaired defect” hypothesis	21
4. Perfusion techniques	27
4.1. Perfusion medium	27
4.1.1. Salt solutions	27
4.1.2. Addition of substrates	27
4.1.3. Preparation of perfusate and dialysate	30
4.1.4. Albumin stock solution	31
4.1.5. Other colloid additives	31
4.1.6. Semisynthetic perfusate with oxygen carriers	33
4.2. Perfusion drive systems, measurement of flow and pressure	37
4.2.1. Hydrostatic pressure	37
4.2.2. Gas pressure	38
4.2.3. Flow measurement, peristaltic pumps. Flow constant or pressure constant perfusion	39
4.2.4. Other techniques of flow measurement	40
4.3. Temperature control	41
4.3.1. Temperature controlled cabinet	41
4.3.2. Temperature control by water jacketing	44

4.4. Aeration	44
4.4.1. Aeration via a glass frit	44
4.4.2. Glass oxygenators in recirculation technique	45
4.4.3. Membrane oxygenators used in the recirculation technique	48
4.4.4. Capillary oxygenator	51
4.4.5. The dialyzer as a “kidney lung” (dialung)	52
4.5. Filtering	54
4.5.1. Filtration of the perfusate	54
4.5.2. In-line filtration	55
4.6. Cannulation	57
4.6.1. Arterial access to the kidney, perfusion cannulas	57
4.6.2. Venous Cannulation	60
4.6.3. Ureteral catheter	61
5. Material for the perfusion apparatus	66
5.1. Single-pass System	66
5.2. Recirculation system	76
5.3. Recirculation mode with dialyzer for aeration and regeneration	78
5.4. Reperfusion after anatomical fixation	80
6. Sterilization and disinfection procedures	83
6.1. Disinfection bath	84
6.2. Thermal disinfection	84
6.3. Sterilization by ethylene oxide	84
6.4. On sterility of the perfusate	84
7. Anesthesia	86
8. Surgical techniques and connection procedure	86
8.1. Selection of surgical instruments	86
8.2. Surgical technique and connection procedures	87
9. Measurements: Parameters and methods	99
9.1. Temperature	99
9.2. Perfusion flow rate	100
9.3. Oxygen consumption	102
9.4. Urinary flow rate, urinary flow blockage	102
9.5. Glomerular filtration rate (GFR) and its measurement	103
9.5.1. Inulin, polyfructosan, sinistrin	103
9.5.2. Creatinine	103
9.5.3. Other markers for determination of GFR	104

9.6. Electrolytes Na, K, Ca, Cl, HCO ₃	104
9.7. Osmolality and colloid-osmotic pressure	106
9.8. Colloids, substrates incl. amino acids, protein and glucose	109
9.8.1. Albumin	109
9.8.2. Other colloids	110
9.8.3. Metabolic substrates	112
10. Kidney perfusion: comparison of results	114
10.1. Single pass perfusion and recirculation with dialysis	114
10.1.1. Perfusion flow rate, urine flow rate, GFR and filtration fraction in relation to albumin concentration	115
10.1.2. Kidney weight – a problematic reference parameter	120
10.1.3. Autoregulation of renal perfusion flow rate	122
10.1.4. Fractional sodium reabsorption and absolute transport rate TNa	125
10.1.5. Glucose reabsorption	127
10.1.6. Potassium secretion	128
10.1.7. Efficiency of sodium transport in relation to oxygen consumed	132
10.2. Recirculation perfusion. Perfusion experiments on the endocrine function of the kidney	133
10.3. Recirculation with regeneration of the perfusate by dialysis	137
10.4. The anatomically fixed kidney as a tool for analyzing the glomerular filter	138
10.4.1. Perfusion fixation of the isolated kidney for reperfusion	138
10.4.2. Fixation solution for reperfusion experiments	140
11. Tabellarium and abbreviations for the tables	141
12. Annex	150
12.1. Biochemical studies on the energy metabolism of the IPRK	150
12.2. Morphological studies of the IPRK, perfused either cell-free or with erythrocyte-containing medium	153
12.3. Hypothesis to account for oxygen deficiency in the cell-free perfused kidney	167
12.4. Overview of the contributions of our group to the four different techniques of renal perfusion	177
Klaus Hinrich Neumann, Göttingen	
13. Special aspects of micropuncture experiments on the IPRK	180
13.1. Studies on the isolated perfused rat kidneys	180
13.2. Glomerular morphometry	184

Frank Schweda, Regensburg

14. The isolated perfused mouse kidney	187
14.1. Perfusion techniques	187
14.2. Perfusion medium	189
14.3. Perfusion apparatus	190
14.4. Surgical preparation and cannulation of the renal artery	193
Ad 14.2 Appendix	195
Sheep erythrocytes as O₂ carriers during perfusion of the isolated mouse kidney. Contributed by Jan Czogalla, Zurich, Institute of Anatomy, University of Zurich, Switzerland	
15. Technical appendix and image collection of the IPRK	197
16. Appendix on the history of renal perfusion 1849–1908	208
17. References	212