1

Contents

List of Contributors xvii Preface xxiii

1	Principle of Low-temperature Fuel Cells Using an Ionic Membrane
	Claude Lamy
1.1	Introduction 1
1.2	Thermodynamic Data and Theoretical Energy Efficiency under
	Equilibrium $(j=0)$ 2
1.2.1	Hydrogen/oxygen Fuel Cell 2
1.2.2	Direct Alcohol Fuel Cell 5
1.3	Electrocatalysis and the Rate of Electrochemical Reactions 8
1.3.1	Establishment of the Butler-Volmer Law (Charge Transfer
	Overpotential) 9
1.3.2	Mass Transfer Limitations (Concentration Overpotential) 11
1.3.3	Cell Voltage versus Current Density Curves 13
1.3.4	Energy Efficiency under Working Conditions $(j \neq 0)$ 15
1.3.4.1	Hydrogen/oxygen Fuel Cell 15
1.3.4.2	Direct Ethanol Fuel Cell 15
1.4	Influence of the Properties of the PEMFC Components (Electrode
	Catalyst Structure, Membrane Resistance, and Mass Transfer
	Limitations) on the Polarization Curves 16
1.4.1	Influence of the Catalytic Properties of Electrodes 17
1.4.2	Influence of the Membrane-specific Resistance 17
1.4.3	Influence of the Mass Transfer Limitations 18
1.5	Representative Examples of Low-temperature Fuel Cells 19
1.5.1	Direct Methanol Fuel Cell for Portable Electronics 19
1.5.2	Hydrogen/air PEMFC for the Electrical Vehicle 25
1.6	Conclusions and Outlook 30
	Acknowledgments 31
	References 31

1	Contant
1	Contents

2	Research Advancements in Low-temperature Fuel Cells 35
	N. Rajalakshmi, R. Imran Jafri, and K.S. Dhathathreyan
2.1	Introduction 35
2.2	Proton Exchange Membrane Fuel Cells 38
2.2.1	Current Scenario 41
2.2.2	Ideal Properties for Electrocatalyst, Catalyst Support, and Current
	Collectors for Market Entry 43
2.2.3	Role of Nanomaterials in Bringing Down Pt Loading 44
2.2.4	Types of Catalyst Supports (Activated Carbon, CNT, Graphene, etc.) 44
2.2.5	Non-Pt-Based Catalysts 46
2.2.6	Catalyst Corrosion and Fuel Cell Life (Protocols for Testing) 46
2.2.7	Type of Fuels (Alcohols) 46
2.3	Alkaline Fuel Cells 50
2.3.1	Fuels for Alkaline Membrane Fuel Cells 50
2.3.2	Types of Catalysts 54
2.3.3	Types of Membranes 54
2.3.4	System Development 57
2.4	Direct Borohydride Fuel Cells 59
2.4.1	Catalyst Development 59
2.4.2	System Development 61
2.5	Regenerative Fuel Cells 62
2.5.1	Electrocatalysts 62
2.5.2	System Development 63
2.6	Conclusions and Outlook 64
2.0	Acknowledgments 65
	References 65
3	Electrocatalytic Reactions Involved in Low-temperature Fuel Cells 75
	Claude Lamy
3.1	Introduction 75
3.2	Preparation and Characterization of Pt-based Plurimetallic
	Electrocatalysts 76
3.2.1	Preparation Methods of the Catalysts 76
3.2.1.1	Electrochemical Deposition 76
3.2.1.2	Impregnation–Reduction Methods 77
3.2.1.3	Colloidal Methods 78
3.2.1.4	Carbonyl Complex Route 81
3.2.1.5	Plasma-enhanced PVD 82
3.2.2	Characterization of Catalysts and Determination of Reaction
	Mechanisms by Physicochemical Methods 82
3.2.2.1	Physicochemical Characterizations 82
3.2.2.2	Electrochemical Measurements: Cyclic Voltammetry and CO
	Stripping 83
3.2.2.3	Infrared Reflectance Spectroscopy (EMIRS, FTIRS) 85
3.2.2.4	Differential Electrochemical Mass Spectrometry 86
3.2.2.5	Chromatographic Techniques 88

3.3	Mechanisms of the Electrocatalytic Reactions Involved in Low- temperature Fuel Cells 90
3.3.1	Electrocatalytic Oxidation of Hydrogen 91
3.3.2	Electrocatalytic Reduction of Dioxygen 93
3.3.3	Electrocatalysis of CO Oxidation 96
3.3.4	Oxidation of Alcohols in a Direct Alcohol Fuel Cell
	(DMFC, DEFC) 98
3.3.4.1	Oxidation of Methanol 99
3.3.4.2	Oxidation of Ethanol 102
3.4	Conclusions and Outlook 105
	Acknowledgment 106
	References 106
4	Direct Hydrocarbon Low-temperature Fuel Cell 113
	Ayan Mukherjee and Suddhasatwa Basu
4.1	Introduction 113
4.2	Direct Methanol Fuel Cell 114
4.2.1	Efficiency of DMFC 116
4.2.2	Methanol Crossover 116
4.2.3	Catalyst for Methanol Electrooxidation 117
4.3	Direct Ethanol Fuel Cell 119
4.3.1	Proton Exchange Membrane-based DEFC 120
4.3.2	Anion Exchange Membrane-based DEFC 120
4.3.3	Ethanol Crossover 121
4.3.4	Catalyst for Ethanol Electrooxidation 122
4.4	Direct Ethylene Glycol Fuel Cell 125
4.4.1	Proton Exchange Membrane-based DEGFC 126
4.4.2	Anion Exchange Membrane-based DEGFC 126
4.4.3	Catalyst for Ethylene Glycol Electrooxidation 128
4.5	Direct Formic Acid Fuel Cell 129
4.5.1	Catalyst for Formic Acid Electrooxidation 130
4.6	Direct Glucose Fuel Cell 131
4.7	Commercialization Status of DHFC 132
4.8	Conclusions and Outlook 134
	References 137
5	The Oscillatory Electrooxidation of Small Organic Molecules 145
	Hamilton Varela, Marcelo V.F. Delmonde, and Alana A. Zülke
5.1	Introduction 145
5.2	In Situ and Online Approaches 147
5.3	The Effect of Temperature 152
5.4	Modified Surfaces 155
5.5	Conclusions and Outlook 157
	Acknowledgments 157
	References 158

6	Degradation Mechanism of Membrane Fuel Cells with Monoplatinum
	and Multicomponent Cathode Catalysts 165
	Mikhail R. Tarasevich and Vera A. Bogdanovskaya
6.1	Introduction 165
6.2	Synthesis and Experimental Methods of Studying Catalytic Systems
	under Model Conditions 166
6.2.1	Synthesis Methods Followed 166
6.2.1.1	Polyol Technique of Synthesis of Pt/C Catalysts 167
6.2.1.2	Thermochemical Method of Synthesis of Bi- and Trimetallic
	Catalysts 167
6.2.2	Electrochemical Research Methods 167
6.2.3	Structural Research Methods 168
6.3	Characteristics of Commercial and Synthesized Catalysts 169
6.3.1	Corrosion Stability of CMs (Supports) 169
6.3.1.1	Electrochemical Corrosion Exposure 169
6.3.1.2	Chemical Corrosion Exposure 171
6.3.2	Electrochemical and Structural Characteristics of Catalytic
	Systems 171
6.3.2.1	Monometallic Catalysts with Pt Content of 20 and 40 wt.% 171
6.3.2.2	Bimetallic Catalytic Systems (PtM) 174
6.3.2.3	Trimetallic Catalysts (PtCoCr/C) 175
6.4	Methods of Testing Catalysts within FC MEAs 179
6.5	Mechanism of Degradation Phenomenon in MEAs with Commercial
	Pt/C Catalysts 181
6.6	Characteristics of MEAs with 40Pt/CNT-T-based Cathode 187
6.7	Characteristics of MEAs with 50PtCoCr/C-based Cathodes 188
6.8	Conclusions and Outlook 192
	Acknowledgments 193
	References 193
7	Recent Developments in Electrocatalysts and Hybrid Electrocatalyst
•	Support Systems for Polymer Electrolyte Fuel Cells 197
	Surbhi Sharma
7.1	Introduction 197
7.2	Current State of Pt and Non-Pt Electrocatalysts Support Systems for
	PEFC 197
7.3	Novel Pt Electrocatalysts 199
7.3.1	1D, 2D, and 3D Nanostructures 200
7.4	Pt-based Electrocatalysts on Novel Carbon Supports 203
7.4.1	Mesoporous Carbon Supports 203
7.4.2	Carbon Nanotube Supports 204
7.4.3	Graphene-based Supports 205
7.5	Pt-based Electrocatalysts on Novel Carbon-free Supports 207
7.5.1	Tungsten Oxides and Carbides 207
7.5.2	Tin Oxide Supports 208
7.5.3	Titanium Nitride Supports 210
7.5.4	Doped Metal-based Supports 211

7.5.4.1	Doped Tin Oxide 212
7.5.4.2	Doped Titanium Dioxide 212
7.6	Pt-free Metal Electrocatalysts 213
7.6.1	Metal on Novel Carbon Supports 213
7.6.2	Metal on Novel Carbon-free Supports 214
7.7	Influence of Support: Electrocatalyst-Support Interactions and Effect of
	Surface Functional Groups 214
7.7.1	Enhancing Electrocatalytic Activity 215
7.7.2	Enhancing CO Tolerance 216
7.8	Hybrid Catalyst Support Systems 218
7.8.1	Carbon-enriched Metal-based Supports 218
7.8.2	Polymers in Catalyst Support Systems 221
7.8.3	Polyoxometalates Liquid Catholytes 222
7.9	Conclusions and Outlook 223
	References 224
8	Role of Catalyst Supports: Graphene Based Novel Electrocatalysts 241
	Chunmei Zhang and Wei Chen
8.1	Introduction 241
8.2	Graphene-based Cathode Catalysts for Oxygen Reduction
0.0.1	Reaction 243
8.2.1	Graphene-supported Nonnoble Metal ORR Catalysts 244
8.2.1.1	Transition Metal–Nitrogen (N) Graphene Catalysts 244
8.2.1.2	Graphene-supported Metal Oxide/Sulfide Nanocomposites 244
8.2.2	Graphene-supported Noble Metal Catalysts 246
8.2.2.1	Graphene-supported Pt/Pt-alloy ORR Catalysts 247
8.2.2.2	Graphene-supported Other Metal Alloys as ORR Catalysts 250
8.3	Graphene-based Anode Catalysts 250
8.3.1	Graphene-based Catalysts for Methanol Oxidation Reaction 251
8.3.2	Graphene-based Catalysts for Ethanol Oxidation Reaction 253
8.3.3	Graphene-based Catalysts for Formic Acid Oxidation Reaction 254
8.4	Conclusions and Outlook 256
	Acknowledgment 256 References 257
	References 237
9	Recent Progress in Nonnoble Metal Electrocatalysts for Oxygen
	Reduction for Alkaline Fuel Cells 267
	Qinggang He and Xin Deng
9.1	Introduction 267
9.1.1	Alkaline Fuel Cells 267
9.1.2	Oxygen Reduction Reaction 269
9.2	Nonnoble Metal Electrocatalysts 272
9.2.1	Carbon-supported Metal-N _b Matrix 272
9.2.1.1	Fundamental Overview 272
9.2.1.2	Proposed Active Sites 273
9.2.1.3	Synthesis Methods 276
9.2.2	Transition Metal Oxides 280

K	Contents

9.2.3	Transition Metal Chalcogenides 283
9.2.4	Transition Metal Carbides/Nitrides/Oxynitrides 285
9.2.4.1	Transition Metal Carbides 285
9.2.4.2	Transition Metal Nitrides/Oxynitrides 286
9.2.5	Perovskites 287
9.2.6	Metal-free Electrocatalysts 289
9.2.6.1	Carbon Nanotube-based Metal-free Electrocatalysts 289
9.2.6.2	Graphene-based Metal-free Electrocatalysts 293
9.2.6.3	Other Types of Metal-free Carbon Electrocatalysts 294
9.3	Conclusions and Outlook 296
7.0	References 299
	References 277
10	Anode Electrocatalysts for Direct Borohydride and Direct Ammonia
	Borane Fuel Cells 317
	Pierre-Yves Olu, Anicet Zadick, Nathalie Job, and Marian Chatenet
10.1	Introduction 317
10.2	Direct Borohydride (and Ammonia Borane) Fuel Cells 318
10.2.1	Basics of DBFC and DABFC 318
10.2.2	Main Issues of the DBFC and DABFC 319
10.3	Mechanistic Investigations of BOR and BH ₃ OR at Noble
	Electrocatalysts 320
10.3.1	Different Families of (Electro)Catalysts for the BOR 320
10.3.2	BOR Mechanism at Pt Surfaces 323
10.3.3	The issue of H ₂ Generation (and Possible Oxidation) during the
	BOR 324
10.3.4	Effects of the Mass Transfer, Pt Loading, and Active Layer Thickness
	on the BOR 325
10.3.5	Does the BH ₃ OR Mechanism Differ from the BOR? 328
10.4	Toward Ideal Anode of DBFC and DABFC 329
10.4.1	Practical Benchmarks for the Evaluation of Anode Electrocatalyst
	Materials 330
10.4.1.1	Rotating Disk Electrode Studies in Half-Cell Configuration 330
	Hydrogen Evolution and Faradaic Efficiency of the
	Electrocatalysts 331
10.4.2	Performances of DBFC and DABFC Unit Cells 333
10.4.3	Toward Optimal BOR and ABOR Electrocatalysts? 335
10.5	Durability of DBFC and DABFC Electrocatalysts 336
10.5.1	From FC Studies 336
10.5.2	From Accelerated Stress Tests 336
10.6	Conclusions and Outlook 339
	References 340
11	Recent Advances in Nanostructured Electrocatalysts for Low-
	temperature Direct Alcohol Fuel Cells 347
	Srabanti Ghosh, Thandavarayan Maiyalagan, and Rajendra N. Basu
11.1	Introduction 347
11.2	Fundamentals of Electrooxidation of Organic Molecules for Fuel
	Cells 348

11.3	Investigation of Electrocatalytic Properties of Nanomaterials 352
11.4	Anode Electrocatalysts for Direct Methanol or Ethanol Fuel Cells 353
11.4.1	Nobel Metal-based Nanostructured Catalysts 353
11.4.2	Palladium-based Nanostructured Catalysts 354
11.4.3	Improved Performance of Binary and Ternary Catalysts 355
11.4.4	Effect of Support on Catalytic Activity of Nanostructured
	Electrocatalysts 357
11.5	Anode Catalysts for Direct Polyol Fuel Cells (Ethylene Glycol and
	Glycerol) 359
11.6	Conclusions and Outlook 361
	References 362

12	Electrocatalysis of Facet-controlled Noble Metal Nanomaterials
	for Low-temperature Fuel Cells 373
	Xiaojun Liu, Wenyue Li, and Shouzhong Zou
12.1	Introduction 373
12.2	Synthesis of Shape-controlled Noble Metal Nanomaterials 374
12.2.1	One-pot Chemical Reduction 375
12.2.2	Seed-mediated Growth 377
12.2.3	Solvothermal and Hydrothermal Synthesis 378
12.2.4	Galvanic Replacement 381
12.2.5	Electrochemical Deposition 383
12.3	Applications of Shape-controlled Noble Metal Nanomaterials as
	Catalysts for Low-temperature Fuel Cells 383
12.3.1	Oxygen Reduction Reaction 383
12.3.2	Methanol Oxidation Reaction 385
12.3.3	Ethanol Oxidation Reaction 386
12.3.4	Formic Acid Oxidation Reaction 387
12.4	Conclusions and Outlook 389
	Acknowledgment 390
	References 390
13	Heteroatom-doped Nanostructured Carbon Materials as ORR
	Electrocatalysts for Low-temperature Fuel Cells 401
	Thandavarayan Maiyalagan, Subbiah Maheswari, and Viswanathan S. Saji
13.1	Introduction 401
13.2	Oxygen Reduction Reaction and Methanol-tolerant ORR
100	Catalysts 402
13.3	Heteroatom-doped Nanostructured Carbon Materials 403
13.3.1	Synthesis of Heteroatom-doped Carbon Materials 403
13.3.2	Single Heteroatom-doped Carbon Nanomaterials 403
	N Doping 403
	Stability of N-doped Graphene 406
	B Doping 408
	P Doping 408
	S Doping 409
13.3.2.6	XPS Analysis 409

13.3.2.7	Halogen Doping 411
13.3.3	Dual Heteroatom-doped Carbon Materials 411
13.3.4	Multiheteroatom-doped Carbon Materials 414
13.4	Heteroatom-doped Carbon-based Nanocomposites 415
13.5	Conclusions and Outlook 416
	References 417
14	Transition Metal Oxide, Oxynitride, and Nitride Electrocatalysts with and
	without Supports for Polymer Electrolyte Fuel Cell Cathodes 423
	Mitsuharu Chisaka
14.1	Introduction 423
14.2	Transition Metal Oxide and Oxynitride Electrocatalysts 424
14.2.1	Stability 424
14.2.2	Activity 427
14.2.2.1	Evaluation of ORR Activity 427
	Active Sites for ORR 431
14.3	Transition Metal Nitride Electrocatalysts 433
14.4	Carbon Support-Free Electrocatalysts 434
14.5	Conclusions and Outlook 435
	Acknowledgment 436
	References 436
15	Spectroscopy and Microscopy for Characterization of Fuel Cell
	Catalysts 443
	Chilan Ngo, Michael J. Dzara, Sarah Shulda, and Svitlana Pylypenko
15.1	Introduction 443
15.2	Electron Microscopy 444
15.2.1	Scanning Electron Microscopy 444
15.2.2	Transmission Electron Microscopy 446
15.2.3	In Situ TEM 446
15.2.4	Scanning Transmission Electron Microscopy 449
15.3	Electron Spectroscopy: Energy-dispersive Spectroscopy and Electron
	Energy Loss Spectroscopy 449
15.4	X-ray Spectroscopy 451
15.4.1	X-ray Photoelectron Spectroscopy 452
15.4.2	X-ray Absorption Spectroscopy 453
15.5	Gamma Spectroscopy: Mossbauer 455
15.6	Vibrational Spectroscopy: Fourier Transform Infrared Spectroscopy and
	Raman Spectroscopy 456
15.7	Complementary Techniques 459
15.7.1	X-ray Diffraction and Small-angle/Wide-angle X-ray Scattering 459
15.7.2	Gas Adsorption/Desorption and Thermal Analysis Techniques 460
15.7.3	Inductively Coupled Plasma Methods 461
15.7.4	Nuclear Magnetic Resonance Spectroscopy 461
15.7.5	Atom Probe Tomography 461
15.8	Conclusions and Outlook 462
	References 462

16	Rational Catalyst Design Methodologies: Principles and Factors
	Affecting the Catalyst Design 467
	Sergey Stolbov and Marisol Alcántara Ortigoza
16.1	Introduction 467
16.2	Oxygen Reduction Reaction 468
16.3	Recent Progress in Search for Efficient ORR Catalysts 469
16.4	Physics and Chemistry behind ORR 471
16.5	Rational Design of ORR Catalysts 475
16.5.1	Electrochemical and Thermodynamic Stability 475
16.5.2	Catalytic Activity toward ORR 478
16.6	Rationally Designed ORR Catalysts Addressing Cost-effectiveness 482
16.7	Conclusions and Outlook 483
	References 483
17	Effect of Gas Diffusion Layer Structure on the Performance
	of Polymer Electrolyte Membrane Fuel Cell 489
	Branko N. Popov, Sehkyu Park, and Jong-Won Lee
17.1	Introduction 489
17.2	Structure of Gas Diffusion Layer 490
17.2.1	Single-layer Macroporous Substrate 491
17.2.2	Dual-layer Gas Diffusion Layer 493
17.3	Carbon Materials 493
17.4	Hydrophobic and Hydrophilic Treatments 494
17.5	Microporous Layer Thickness 499
17.6	Microstructure Modification 500
17.7	Conclusions and Outlook 500
	Acknowledgment 505
	References 505
18	Efficient Design and Fabrication of Porous Metallic Electrocatalysts 511
	Yaovi Holade, Anaïs Lehoux, Hynd Remita, Kouakou B. Kokoh, and
	Têko W. Napporn
18.1	Introduction 511
18.2	Advances in the Design and Fabrication of Mesoporous Metallic
	Materials 512
18.2.1	Dealloying Route: the Great and Positive Aspect of Controlled
	Dissolution/Corrosion 512
18.2.2	Nanoarchitecture Engineering by a Templating Approach: From 1D to
	3D Multiscale Design 513
18.2.3	Controlled Radiolytic Synthesis: An Elegant Process for Designing
	Multispatial Nanostructures 515
18.2.4	Other Strategies for Tuning Porosity in Metallic Nanomaterials:
	Nanocages, Nanoframes, and so on 517
18.3	Nanoporous Metallic Materials at Work in Electrocatalysis 520
18.3.1	Anodic Catalysis: Electrocatalytic Oxidation of Organic
	Molecules 520
18.3.2	Cathodic Catalysis: Electrochemical Oxygen Reduction Reaction 523

18.3.3	Other Electrochemical Applications: Fuel Cells, Electroanalysis, and Sensing 524
18.4	Conclusions and Outlook 526
	References 527
19	Design and Fabrication of Dealloying-driven Nanoporous Metallic
	Electrocatalyst 533 Zhonghua Zhang and Wang Ying
19.1	Introduction 533
19.1	Design of Precursors for Dealloying-driven Nanoporous Metallic
17.2	Electrocatalysts 535
19.2.1	Compositions 536
19.2.2	Fabrication Methods of Precursors 537
19.3	Microstructural Modulation of Dealloying-driven Nanoporous Metallic
	Electrocatalysts 538
19.3.1	Control Over the Dealloying Process 539
19.3.2	Further Modification of NPMs 542
19.4	Catalytic Properties of Dealloying-driven Nanoporous Metallic
	Electrocatalysts 542
19.4.1	Nanoporous Metals 543
19.4.2	Nanoporous Alloys 545
19.4.3	Nanoporous Nanocomposites 547
19.4.4	Other Dealloyed Nanostructured Alloys 548
19.4.5	Density Functional Theory Calculations 550
19.5	Conclusions and Outlook 551
	Acknowledgments 551
	References 551
20	Recent Advances in Platinum Monolayer Electrocatalysts for the Oxygen
	Reduction Reaction 557
	Kotaro Sasaki, Kurian A. Kuttiyiel, Jia X. Wang, Miomir B. Vukmirovic, and
20.1	Radoslav R. Adzic
20.1	Introduction 557
20.2	Pt ML on Pd Core Electrocatalysts (Pt _{ML} /Pd/C) 558 Synthesis, Structure, and Activity 558
20.2.1 20.2.2	Synthesis, Structure, and Activity 558 Potential Cycle Tests between 0.6 and 0.9 V 560
20.2.2	Performance at High Current Densities 563
20.3	Pt ML on PdAu Core Electrocatalyst (Pt _{ML} /PdAu/C) 564
20.3.1	Synthesis, Characterization, and Stability 564
20.3.2	Potential Cycle Tests between 0.6 and 1.0 V 565
20.3.3	Potential Cycle Tests between 0.6 and 1.4 V 567
20.4	Further Improving Activity and Stability of Pt ML
	Electrocatalysts 570
20.4.1	Nitride-stabilized Cores 570
	PtMN (M = Fe, Co, and Ni) Core–Shell Catalysts 570
	Pt ML on PdNiN Core Catalysts 573
20.4.2	Intermetallic Pd-based Nanoparticles 573

20.4.3 Iridium (Ir)-based Nanoparticle Cores 578 20.5 Conclusions and Outlook 579 Acknowledgments 579 References 580

Index 585