Contents

List of Contributors xi

1	Block Copolymer Templating as a Path to Porous Nanostructured	
	Carbons with Highly Accessible Nitrogens for Enhanced	
	(Electro)chemical Performance 1	
	John P. McGann, Mingjiang Zhong, Eun Kyung Kim, Sittichai Natesakhawat, Miete	
	Jaroniec, Jay F. Whitacre, Krzysztof Matyjaszewski, and Tomasz Kowalewski	
1.1	Introduction 1	
1.2	Electronic Properties of Graphene Edges 2	
1.3	Edge Functionalization of Graphene 3	
1.3.1	Post-Pyrolysis Nitrogen Doping 3	
1.3.2	Pyrolysis of Nitrogen-Containing Precursors 3	
1.3.2.1	Polyacrylonitrile 4	
1.4	Block Copolymer Templating as a Path to High Surface Area N-Doped	
	Carbons with Accessible Nitrogen-Containing Graphitic Edges 5	
1.5	Evidence of Enhanced Electrochemical Performance of Nitrogen-Rich	
	Copolymer-Templated Mesoporous Carbons 8	
1.5.1	Supercapacitors 8	
1.5.2	Metal-Free Oxygen Reduction Reaction 11	
1.6	CTNCs as CO ₂ Sorbents 12	
1.7	Conclusions 13	
	Acknowledgments 13	
	References 13	
2	Functional Carbon Materials from Ionic Liquid Precursors 21	
	Jens Peter Paraknowitsch and Arne Thomas	
2.1	Introduction 21	
2.2	Ionic Liquids as Carbon Precursors 22	
2.3	N-Doped Carbon Materials 23	
2.4	From Ionic Liquids to Carbon Materials – Structural Development during	
	Carbonization 25	

vi	Contents	
	2.5	N-Doped Carbon Materials from Ionic Liquid Precursors 26
	2.6	Processing, Shaping, and Functionalization 30
	2.7	Deep Eutectic Solvents – Supramolecular ILs for Carbon Materials 32
	2.8	Applications of IL Derived Carbons 34
	2.9	Conclusion 36
		References 37
	3	Functionalization of Graphene Oxide by Two-Step Alkylation 43
		Yi Huang, Weibo Yan, Yanfei Xu, Lu Huang, and Yongsheng Chen
	3.1	Introduction 43
	3.2	Results and Discussion 43
	3.3	Conclusion 49
		Acknowledgments 49
		Supporting Information 50
		Experimental Section 50
		Materials and Methods 50
		Functionalization of GO 50
		Electrical Conductivity Characterization 50
		References 51
	4	Toward Rationally Designed Graphene-Based Materials and
		Devices 53
		Yu Teng Liang and Mark C. Hersam
	4.1	Introduction 53
	4.2	Graphene Synthesis 54
	4.3	Structure – Property Relationships 55
	4.4	Graphene Separation 57
	4.5	Graphene-Based Catalysis 59
	4.6	Graphene Functionalization and Templating 61
	4.7	Conclusion 62
		Acknowledgments 64
		References 64
	5	Supramolecular Synthesis of Graphenic Mesogenic Materials 69
		Fei Guo and Robert Hurt
	5.1	Introduction 69
	5.2	Liquid Crystal Precursors and Phases 71
	5.2.1	Thermotropic Discotic Liquid Crystals 71
	5.2.2	Lyotropic Chromonic Liquid Crystals 73
	5.3	Methods for Directing Assembly 74
	5.4	Graphenic Mesogenic Materials and their Applications 77
	5.5	Comparison of Thermotropic and Lyotropic Assembly Routes 80
	5.6	Outlook 81
		Acknowledgments 82
		References 82

6	Synthesis and Characterization of Hexahapto-Chromium Complexes	
	of Single-Walled Carbon Nanotubes 87	
	Irina Kalinina, Elena Bekyarova, Santanu Sarkar, Mikhail E. Itkis, Sandip Niyogi, Neetu	
	Jha, Qingxiao Wang, Xixiang Zhang, Yas Fadel Al-Hadeethi, and Robert C. Haddon	
6.1	Introduction 87	
6.2	Experimental Section 89	
6.2.1	Synthesis of $(\eta^6\text{-SWNT})\text{Cr(CO)}_3$ Complex (3a) 89	
6.2.2	Synthesis of $[\eta^6$ -SWNT-CONH(CH ₂) ₁₇ CH ₃]Cr(CO) ₃ Complex (4a) 90	
6.2.3	Synthesis of $(\eta^6\text{-SWNT})\text{Cr}(\eta^6\text{-C}_6\text{H}_6)$ Complex (5a) 90	
6.2.4	Synthesis of $[\eta^6$ -SWNT-CONH(CH ₂) ₁₇ CH ₃]Cr(η^6 -C ₆ H ₆) Complex (6a) 90	
6.2.5	Decomplexation Reactions 90	
6.2.6	High Vacuum Conductivity Studies of SWNT Thin Films by Electron Beam	
	Metal Evaporation 91	
6.3	Results and Discussion 91	
6.3.1	Synthesis and Bonding in the SWNT – Cr Complexes 91	
6.3.2	Thermogravimetric Analysis (TGA) and Chromium Stoichiometry 95	
6.3.3	Transmission Electron Microscopy (TEM) 98	
6.3.4	Mid-Infrared Spectroscopy (IR) 101	
6.3.5	X-Ray Photoelectron Spectroscopy (XPS) 101	
6.4	Raman Spectroscopy 102	
6.4.1	Ultraviolet – Visible – Near-Infrared – Far-Infrared Spectroscopy	
	(UV-Vis-NIR-FIR) 103	
6.4.2	High Vacuum Conductivity Studies of SWNT Thin Films by Electron Beam	
	Metal Evaporation 107	
6.5	Conclusions 110	
	Acknowledgments 110	
	References 110	
7	Chemical Synthesis of Carbon Materials with Intriguing Nanostructure	
	and Morphology 115	
	An-Hui Lu, Guang-Ping Hao, Qiang Sun, Xiang-Qian Zhang, and Wen-Cui Li	
7.1	Introduction 115	
7.2	Zero-Dimensional Carbon Materials: Carbon Quantum Dots and Carbon	
	Spheres 116	
7.2.1	Solid Carbon Spheres 117	
7.2.1.1	Pyrolysis of Carbon-Rich Polymer Spheres (Solution Chemistry) 117	
7.2.1.2	Hydrothermal Carbonization (HTC) Synthesis of Carbon Spheres 121	
7.2.2	Hollow Carbon Spheres 122	
7.2.2.1	Hard-Templating Method 122	
7.2.2.2	Soft-Templating Method 125	
7.2.3	Core – Shell Carbon-Based Composites 127	
7.3	One-Dimensional (1D) Carbon Materials 129	
7.4	Two-Dimensional (2D) Carbon Materials: Membranes and Films 131	
7.5	Three-Dimensional (3D) Carbon Materials: Monoliths 135 Sol-Gel Method 135	
7.5.1 7.5.1.1	Sol – Gel Method 135 New Synthesis Approaches 135	
7.5.1.1	New Synthesis Addition 133	

•••	
'iii	Content:

7.5.1.2	Functionality Integration 136
7.5.2	Nanocasting Pathway 140
7.5.2.1	Carbon Monolith Replicated from Silica Monolith 140
7.5.2.2	Carbon Monoliths Replicated from Colloidal Crystals 142
7.5.2.3	One-Step Nanocasting Technique 142
7.5.3	Self-Assembly Approach for the Preparation of Carbon Monoliths 143
7.5.4	Dual Template to Hierarchical Carbon Monolith: A Combination of
7.5.4	Nanocasting and Self-Assembly 145
7.6	Summary and Outlook 147
7.0	
	Acknowledgments 148
	References 148
8	Novel Radiation-Induced Properties of Graphene and Related
	Materials 159
	Prashant Kumar, Barun Das, Basant Chitara, K. S. Subrahmanyam, H.S.S. Ramakrishna
	Matte, Urmimala Maitra, K. Gopalakrishnan, S. B. Krupanidhi, and C. N. R. Rao
8.1	Introduction 159
8.2	Radiation-Induced Reduction of Graphene Oxide 159
8.3	Nanopatterning 163
8.4	Blue Emission from Graphene-Based Materials 167
8.5	Photothermal Effects in Laser-Induced Chemical Transformations 170
8.6	Graphene as an Infrared Photodetector 172
8.7	Reduced Graphene Oxide as an Ultraviolet Detector 178
8.8	Laser-Induced Unzipping of Carbon Nanotubes to Yield Graphene
0.0	Nanoribbons 178
8.9	Generation of Graphene and Other Inorganic Graphene Analogs by
0.7	Laser-Induced Exfoliation in Dimethylformamide 180
8.10	Conclusion 184
0.10	References 184
	References 104
9	Heterofullerenes: Doped Buckyballs 191
	Max von Delius and Andreas Hirsch
9.1	Introduction 191
9.2	Heterofullerenes $(C_n X_m)$, Azafullerenes $(C_n N_m)$ and their Properties 191
9.2.1	Azafullerenes 192
9.2.2	Borafullerenes 193
9.2.3	Other Heterofullerenes 193
9.3	Synthesis and Functionalization of Azafullerenes: An Overview 196
9.3.1	Synthesis of $(C_{59}N)_2$ 196
9.3.2	Radical Functionalization of C ₅₉ N 197
9.3.3	Nucleophilic Functionalization of $C_{59}N^+$ 199
9.4	Recent Developments: Pentaadducts $C_{59}N(R)_5$, Synthetic Efforts Toward
	C ₅₈ N ₂ , Azafullerene Peapods, Endohedral Azametallofullerenes, and
	Application of Azafullerenes in Organic Solar Cells 200
9.4.1	Pentaadducts $C_{59}N(R)_5$ 200
9.4.2	Synthetic Efforts Toward $C_{58}N_2$ 203
9.4.3	Azafullerene Peapods and Endohedral Metallo(aza)fullerenes 206

9.4.4 9.5	Applications of Azafullerenes in Organic Solar Cells and Fuel Cells Conclusions 210	
	Acknowledgments 211	
	References 211	
10	Graphene-Inorganic Composites as Electrode Materials for	
	Lithium-Ion Batteries 217	
	Bin Wang, Bin Luo, Xianglong Li, and Linjie Zhi	
10.1	Introduction 217	
10.2	Graphene/0D Inorganic Composites for LIBs 220	
10.2.1	Graphene/0D Metal Oxides for Anodes 220	
10.2.2	Graphene/0D Li-Alloying Materials for Anodes 225	
10.2.3	Graphene/0D Composite Nanomaterials for Cathodes 228	
10.3	Graphene/1D Inorganic Composites for LIBs 230	
10.4	Graphene/2D Inorganic Composites for LIBs 234	
10.5	Summary and Future Outlook 237	
	References 238	

Index 251