

Contents

List of Contributors	<i>xi</i>
Foreword	<i>xv</i>
1	Flow Photochemistry – a Green Technology with a Bright Future
	<i>1</i>
	<i>Michael Oelgemöller, Tyler Goodine, and Padmakana Malakar</i>
1.1	Introduction to Synthetic Organic Photochemistry
1.1	<i>1</i>
1.2	Conventional Batch Photochemistry
1.2	<i>3</i>
1.2.1	Batch Photochemical Technology
1.2.1	<i>3</i>
1.2.2	Photochemistry and Green Chemistry
1.2.2	<i>4</i>
1.3	Continuous-Flow Chemistry
1.3	<i>5</i>
1.3.1	Introduction to Continuous-Flow Chemistry
1.3.1	<i>5</i>
1.3.2	Continuous-Flow Photochemistry
1.3.2	<i>6</i>
1.3.3	Continuous-Flow Photochemical Technology
1.3.3	<i>6</i>
1.4	Selected Examples of Photochemical Reactions under Flow Conditions
1.4	<i>8</i>
1.4.1	Homogeneous Photoreactions
1.4.1	<i>8</i>
1.4.2	Heterogeneous Photoreactions
1.4.2	<i>14</i>
1.5	Summary, Conclusion, and Outlook
1.5	<i>16</i>
	Acknowledgments
	<i>17</i>
	References
	<i>17</i>
2	Continuous Flow Synthesis Using Recyclable Reaction Media
	<i>25</i>
	<i>Takahide Fukuyama, Akihiro Furuta, and Ilhyong Ryu</i>
2.1	Introduction
2.1	<i>25</i>
2.2	Continuous Flow Reactions Using an Ionic Liquid
2.2	<i>26</i>
2.3	Continuous Flow Reactions Using a Fluorous Solvent
2.3	<i>32</i>
2.4	Conclusions
2.4	<i>39</i>
	References
	<i>39</i>
3	Synthesis and Application of H₂O₂ in Flow Reactors
	<i>43</i>
	<i>Minjing Shang and Volker Hessel</i>
3.1	Introduction
3.1	<i>43</i>
3.2	The Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen in Flow Process with Microtechnology
3.2	<i>45</i>

3.2.1	The Synthesis of Hydrogen Peroxide in Trickle-Bed or Packed-Bed Reactor	45
3.2.2	The Synthesis of Hydrogen Peroxide in Coated Microreactors	47
3.2.3	The Synthesis of Hydrogen Peroxide on Pilot Scale	52
3.3	Application of Hydrogen Peroxide in Microreactors	52
3.3.1	The Synthesis of Epoxides with H ₂ O ₂	52
3.3.2	The Production and Application of Organic Peroxides	56
3.3.3	The Synthesis of Sulfoxides and Sulfones from Sulfides and H ₂ O ₂	58
3.3.4	The Synthesis of Adipic Acid from Cyclohexene and Hydrogen Peroxide	59
3.3.5	Other Oxidation Reactions with H ₂ O ₂	60
3.4	Conclusions	66
	Acknowledgments	67
	References	67
4	Scale-Up of Flow Processes in the Pharmaceutical Industry	73
	<i>Peter Poechlauer and Wolfgang Skranc</i>	
4.1	Introduction	73
4.2	Stages of Pharmaceutical Development	75
4.2.1	Preclinical Development	75
4.2.2	Clinical Development	76
4.2.3	Process for Launch	76
4.2.4	Second-Generation Process	76
4.2.5	Continuous Improvement	77
4.3	Sustainability of Supply – The Role of Continuous Processing	77
4.3.1	Sustainability	77
4.3.2	Requirements for a Profitable Process	77
4.3.3	Requirements for a Socially Sustainable Process	79
4.3.4	Requirements for an Environmentally Sustainable Process	80
4.3.4.1	Chemical Efficiency: Atom Economy, E-Factor, and PMI	80
4.3.4.2	Global Warming Potential: GWP	81
4.3.4.3	Materials Input per Service: MIPS	81
4.3.4.4	Missing Metrics	81
4.4	Comparison of Batch to Continuous Large-Scale Processing	83
4.4.1	Process Knowledge of Batch versus Continuous Manufacturing	83
4.4.2	Process Intensity – Decisive for Sustainability	84
4.4.3	Environmental Sustainability and Process Intensity	84
4.4.4	Economic Sustainability and Process Intensity	85
4.5	Scale-Up of a Flow Process	86
4.5.1	Current Status of Industry	86
4.5.2	Implementing Continuous Processes Requires a Different Approach	88
4.5.3	The New Approach Needs Better Collaboration of Disciplines	89
4.5.4	Changing Plant Configurations and Continuous Improvement.	90
4.5.5	Numbering Up	91
4.6	Flow Processes in the Manufacture of Pharmaceuticals: Examples of Scale-Up	94

4.6.1	Reactions Which Are Difficult to Scale Up	94
4.6.1.1	Thermal Overman Rearrangement	94
4.6.1.2	Vilsmeier Reaction	95
4.6.2	Large-Volume Products	96
4.6.2.1	CETP Inhibitors	96
4.6.2.2	SGLT2 Inhibitors	98
4.7	Summary and Outlook on Future Scale-Up	99
	References	100
5	Organic Synthesis in Flow: Toward Higher Levels of Sustainability	103
	<i>Danny C. Lenstra and Floris P. J. T. Rutjes</i>	
5.1	Introduction	103
5.2	Semi-automated Optimization	105
5.2.1	Semi-automated High-Throughput Screening	105
5.2.2	Experimental Designs for Optimization in Continuous Flow	106
5.2.2.1	Example: Swern–Moffat Oxidation at Elevated Temperatures	107
5.2.2.2	Controlled Optimization and Synthesis of Potentially Explosive Azides	108
5.2.3	Response Surface Modeling (RSM) Using Box–Behnken Design	110
5.2.3.1	Biodiesel Production in Continuous Flow	111
5.2.3.2	Processing Biodiesel Waste-Streams	113
5.2.4	Optimization Using Design of Experiment in Conclusion	115
5.3	Self-Optimizing Microreactor Systems	116
5.3.1	Self-Optimization for the Controlled Synthesis of CdSe Quantum Dots	116
5.3.2	Sustainable Etherification in Green Supercritical CO ₂	117
5.3.3	Highly Efficient Self-Optimizing Heck Reaction	121
5.3.4	Self-Optimization of a Paal–Knorr Reaction	123
5.3.5	Algorithms for Self-Optimization in Comparison	124
5.3.5.1	Knoevenagel Condensation of <i>p</i> -Anisaldehyde	125
5.3.5.2	Benzyl Alcohol Oxidation by CrO ₃	126
5.4	Sustainability in Microreactor Technology	127
5.4.1	Ecological Advantages	128
5.4.2	Economical Advantages	128
5.5	Conclusion	129
	References	131
6	Sustainable Flow Chemistry in Drug Discovery	135
	<i>Jesús Alcázar</i>	
6.1	Introduction	135
6.2	Laboratory Equipment	136
6.3	Advantages of Improved Sustainability	138
6.3.1	Cleaner Chemistry	138
6.3.2	Enhanced Synthesis	140
6.3.3	New Reactivity Patterns	142
6.3.4	Improved Safety	144

6.4	Sustainable Drug Discovery	145
6.4.1	Library Synthesis	146
6.4.2	Integrated Platforms	149
6.4.3	Lead Optimization	154
6.4.4	Other Technologies Applicable to Drug Discovery	157
6.5	Conclusions and Outlook	159
	References	160
7	Flow Tools to Define Waste/Time/Energy-Minimized Protocols	165
	<i>Luigi Vaccaro, Chiara Petrucci, Vadym Kozell, and Eleonora Ballerini</i>	
7.1	Introduction	165
7.2	Minimization of Solvents and Reuse of Catalytic Systems	166
7.2.1	Flow Approaches to Minimize Waste in Cross-Coupling Reactions	167
7.2.2	Exploiting Polystyrene-Supported Phosphazene Base in Flow	169
7.2.3	Activation of Silylated-Nucleophile to Access Target Molecules in Flow	172
7.2.4	Heterogeneous Acidic Catalyst in Flow for Waste Minimized Processes	178
7.3	Time/Cost/Energy Saving Examples Using Flow Approach	180
7.3.1	Process Intensification and Easy Scale-Up	181
7.3.2	Energy and Cost Efficiency	183
7.3.3	Minimization of Reaction Time	185
7.4	Conclusions	187
	Acknowledgments	187
	References	188
8	The Application of Flow Chemistry in the Use of Highly Reactive Intermediates and Reagents	193
	<i>Paul Watts</i>	
8.1	Introduction	193
8.2	Hydrogenation Reactions in Flow	195
8.3	Carbonylation in Flow	200
8.4	Organometallic Reagents in Flow	202
8.5	Synthesis of Azides and Diazoacetates in Flow	205
8.6	The Use of Flow Reactors to Prepare Unstable Intermediates Using Photochemistry	207
8.7	The Use of Flow Reactors to Prepare Unstable Intermediates Using Electrochemistry	210
8.8	Fluorination and Trifluoromethylation in Flow	212
8.9	Conclusions	215
	Acknowledgments	215
	References	215

9	Nonconventional Techniques in Sustainable Flow Chemistry	219
	<i>Antonio de la Hoz and Angel Díaz-Ortiz</i>	
9.1	Introduction	219
9.2	Microwave-Assisted Flow Chemistry	220
9.2.1	Commercial and Industrial Microwave Reactors	221
9.2.2	Micro- and Home-Made Flow Reactors	224
9.3	Inductive Heating in Flow Chemistry	230
9.4	Sonochemistry in Flow Chemistry	233
9.5	Organic Electrochemistry in Flow Chemistry	234
9.6	Conclusions	244
	References	245
10	Life Cycle Assessment of Flow Chemistry Processes	249
	<i>Alexei A. Lapkin and Polina Yaseneva</i>	
10.1	Introduction	249
10.2	Environmental Sustainability Assessment	250
10.2.1	Brief Introduction into a Generic LCA Methodology for Chemical Industries	252
10.2.2	LCA for Process Improvement; Simplified LCA	257
10.2.3	LCA as Stage-Gating of Research Projects	258
10.3	Flow Processes LCA Case Studies	261
10.3.1	LCA of Buchwald–Hartwig Amination in Flow: LCA of Organometallic Catalysts	261
10.3.2	LCA of Two-Step Flow Process: Continuous Synthesis of Artemisinin	266
10.3.3	LCA of Microreactors	270
10.4	Conclusions	271
	References	271
11	Solids in Continuous Flow Reactors for Specialty and Pharmaceutical Syntheses	277
	<i>Alexei A. Lapkin, Konstantin Loponov, Giovanna Tomaiuolo, and Stefano Guido</i>	
11.1	Introduction	277
11.2	Mechanisms of Solids Formation in Flow Reactors	278
11.2.1	Nucleation	278
11.2.2	Surface Fouling	280
11.2.3	Colloidal Fouling	283
11.3	Manufacture of Solids in Flow: Soft Particles and APIs	286
11.3.1	Soft Particles	286
11.3.2	Manufacture of Solid Actives in Pharmaceutical Industry in Flow	288
11.4	Use of Solids Suspension Catalysts in Flow	291
11.4.1	Suspended Micro-particles in Flow	291
11.4.2	Suspended Nanoparticles in Flow	292

11.5	Avoiding Blockage of Flow Reactors by Insoluble By-Products: Flow Focusing	294
11.6	Green Engineering Aspects	300
	Acknowledgments	301
	References	301
	Index	309