Contents

Preface	XIII

List of Contributors XVII

Part I HDAC Inhibitor Anticancer Drug Discovery 1

1	From DMSO to the Anticancer Compound SAHA, an Unusual Intellectual
	Pathway for Drug Design 3
	Ronald Breslow
1.1	Introduction 3
1.2	The Discovery of SAHA (vorinostat) 4
1.3	Clinical Trials 7
1.4	Follow-On Research – Selective HDAC Inhibitors 8
1.5	Conclusion 9
	References 9
2	Romidepsin and the Zinc-Binding Thiol Family of Natural Product HDAC Inhibitors 13 A. Ganesan
2.1	Histone Deacetylases as a Therapeutic Target 13
2.2	The Discovery and Development of Romidepsin 15
2.3	The Zinc-Binding Thiol Family of Natural Product HDAC Inhibitors 18
2.4	Synthetic Analogues of the Zinc-Binding Thiol Natural Products 21
2.5	Summary 23
	References 24
3	The Discovery and Development of Belinostat 31
	Paul W. Finn, Einars Loza and Elisabeth Carstensen
3.1	Introduction 31
3.2	Discovery of Belinostat 32
3.2.1	Design Strategy 32
3.2.2	Medicinal Chemistry and SAR 34

VIII	Contents	
	3.3	Belinostat Biological Profiling 41
	3.3.1	Mode of Action and HDAC Isoform Selectivity 41
	3.3.2	Antiproliferative and Antitumor Activity 42
	3.4	Formulation Development 44
	3.5	Clinical Development 45
	3.5.1	Clinical Studies Leading to Approval and Other Clinical
		Investigations 45
	3.5.2	Pharmacokinetics 49
	3.5.3	Safety and Tolerability 51
	3.6	Conclusions 52
		References 53
	4	Discovery and Development of Farydak (NVP-LBH589, Panobinostat)
		as an Anticancer Drug 59
		Peter Atadja and Lawrence Perez
	4.1	Target Identification: From p21 ^{Waf1} Induction to HDAC Inhibition 59
	4.2	Program Flowchart Assays for Drug Discovery 61
	4.3	Hit-To-Lead Campaign: Trichostatin A to LAK974 63
	4.4	Lead Optimization: LAK974 to LAQ824 64
	4.5	Profiling LAQ824 for Cancer Therapy 66
	4.6	Preclinical Development of LAQ824 70
	4.7	LAQ824 Follow-Up 72
	4.8	Discovery of LBH589 73
	4.9 4.10	Safety Profile for LBH589 74
	4.10	Pan-HDAC Inhibition by LBH589 76 Cancer Cell-Specific Cytotoxicity of LBH589 76
	4.11.1	Toxicity and Safety Studies with LBH589 78
	4.11.2	Early Clinical Activity of LBH589 in CTCL 78
	4.11.3	Large-Scale Cell Line Profiling to Discover Lineage-Specific
		LBH589-Sensitive Cancer Indications 79
	4.11.4	Clinical Profiling of Heme Malignancies for LBH589 Activity 80
	4.11.5	Phase II Study of Oral Panobinostat in Hodgkin Lymphoma 81
	4.11.6	Phase IB Clinical Studies in Multiple Myeloma 82
	4.11.7	Phase III Registration Study in Relapsed or Refractory Myeloma 82
	4.11.8	Conclusion and Future Perspective 83
		References 85
	5	Discovery and Development of HDAC Subtype Selective Inhibitor
		Chidamide: Potential Immunomodulatory Activity Against Cancers 89
		Xian-Ping Lu, Zhi-Qiang Ning, Zhi-Bin Li, De-Si Pan, Song Shan,
		Xia Guo, Hai-Xiang Cao, Jin-Di Yu and Qian-Jiao Yang
	5.1	Introduction 89
	5.1.1	Epigenetics and Cancer 89
	5.1.2	Epigenetic Drugs 90
	5.2	Discovery of Chidamide 93

5.2.1	Identification of Chemical Scaffold 93
5.2.2	
5.2.3	Molecular Docking of Chidamide with HDAC2 95
5.3	Molecular Mechanisms of Chidamide 97
5.3.1	Selectivity 97
5.3.2	Induction of Cell Cycle Arrest, Apoptosis and Differentiation of
	Tumour Cells 98
5.3.3	
5.3.4	0 1
5.3.5	1 /
5.4	Animal Studies 101
5.5	Clinical Development 101
5.5.1	•
5.5.2	
5.5.3	•
5.5.4	•
5.6	Future Perspective 106
	References 108
	Part II Steroidal CYP17 Inhibitor Anticancer Drug Discovery 115
6	$Abiraterone\ Acetate\ (Zytiga): An Inhibitor\ of\ CYP17\ as\ a\ The rapeut ic$
	for Castration-Resistant Prostate Cancer 117
	Gabriel M. Belfort, Boyd L. Harrison and Gabriel Martinez Botella
6.1	Introduction 117
6.2	Discovery and Structure–Activity Relationships (SAR) 119
6.3	Preclinical Characterisation of Abiraterone
	and Abiraterone Acetate 126
6.3.1	61
6.3.2	
6.3.3	6,
6.4	Physical Characterisation 129
6.5	Clinical Studies 129
6.6	Conclusion 132 References 133
	References 133
	Part III Anti-Infective Drug Discoveries 137
7	Discovery of Delamanid for the Treatment of Multidrug-Resistant
	Pulmonary Tuberculosis 139
	Hidetsugu Tsubouchi, Hirofumi Sasaki, Hiroshi Ishikawa and
	Makoto Matsumoto
7.1	Introduction 139

۲	Contents	
	7.2	Synthesis Strategy 140
	7.3	Synthesis Route 142
	7.4	Screening Evaluations 145
	7.4.1	Screening Procedure 145
	7.4.2	Screening Results 146
	7.4.3	Selection of a Compound Candidate for Preclinical Tests 151
	7.5	Preclinical Data of Delamanid 151
	7.5.1	Antituberculosis Activity 151
	7.5.2	Mechanism of Action 153
	7.5.3	Pharmacokinetics 153
	7.5.4	Genotoxicity and Carcinogenicity 154
	7.5.5	Preclinical Therapeutic Efficacy 154
	7.6	Clinical Data of Delamanid 155
	7.6.1	Clinical Pharmacokinetics 155
	7.6.2	Drug–Drug Interactions 156
	7.6.3	Cardiovascular Safety 156
	7.6.4	Clinical Therapeutic Efficacy 156
	7.6.5	Other Clinical Trials 157
	7.7	Future Priorities and Conclusion 158
		References 159
	8	Sofosbuvir: The Discovery of a Curative Therapy for the Treatment
		of Hepatitis C Virus 163
		Michael J. Sofia
	8.1	Introduction 163
	8.2	Discussion 165
	8.2.1	Target Rationale: HCV NS5B RNA-Dependent RNA Polymerase 165
	8.2.2	Rationale and Design of a Liver Targeted Nucleotide Prodrug 168
	8.2.3	Prodrug Optimization and Preclinical Evaluation 171
	8.2.4	Prodrug Metabolism 175
	8.2.5	Clinical Proof of Concept of a Liver Targeted Nucleotide Prodrug 176
	8.2.6	The Single Diastereomer: Sofosbuvir 176
	8.2.7	Sofosbuvir Preclinical Profile 177
	8.2.8	Sofosbuvir Clinical Studies 179
	8.2.9	Viral Resistance 182
	8.3	Conclusion 183

References 184

Part IV Central Nervous System (CNS) Drug Discovery 189

	,,,,,,,
9	The Discovery of the Antidepressant Vortioxetine and the Research that Uncovered Its Potential to Treat the Cognitive Dysfunction
	Associated with Depression 191
	Benny Bang-Andersen, Christina Kurre Olsen and Connie Sanchéz
9.1	Introduction 191
9.2	The Discovery of Vortioxetine 192
9.3	Clinical Development of Vortioxetine for the Treatment of MDD 200
9.4	Uncovering Vortioxetine's Potential to Treat Cognitive Dysfunction in Patients with MDD 201
9.4.1	Early Preclinical Evidence that Differentiated Vortioxetine
	from Other Antidepressants 201
9.4.2	Vortioxetine's Primary Targets and Their Putative Impact
	on Cognitive Function – Early Preclinical Data 202
9.4.3	Hypothesis-Generating Clinical Study of Vortioxetine's Effects
	on Cognitive Symptoms in Elderly Patients with MDD 203
9.4.4	Substantiation of a Mechanistic Rationale for the Procognitive
	Effects of Vortioxetine in Preclinical Models and Its Differentiation
	from SSRIs and SNRIs 204
9.4.5	Confirmation of the Cognitive Benefits of Vortioxetine in Two Large Placebo-Controlled Studies in Adults with MDD 205
9.4.6	Additional Translational Evidence of the Effect of Vortioxetine
	on Brain Activity During Cognitive Performance 208
9.5	Conclusion 208
	References 210
	Part V Antiulcer Drug Discovery 215
10	Discovery of Vonoprazan Fumarate (TAK-438) as a Novel, Potent
	and Long-Lasting Potassium-Competitive Acid Blocker 217
	Haruyuki Nishida
10.1	Introduction 217
10.2	Limitations of PPIs and the Possibility of P-CABs 218
10.3	Exploration of Seed Compounds 220
10.4	Lead Generation from HTS Hit Compound 1 220
10.5	Analysis of SAR and Structure-Toxicity Relationship for Lead
	Optimization 223

Selection of Vonoprazan Fumarate (TAK-438) as a Candidate

10.6

10.7

10.8

10.9

10.10

Compound 224

Discussion 229

Conclusion 230

References 232

Preclinical Study of TAK-438 226 Clinical Study of TAK-438 228

Part VI	Cross-Therapeutic Drug Discove	ry
(Respira	ory Diseases/Anticancer) 235	

11	Discovery and Development of Nintedanib: A Novel Antianglogenic
	and Antifibrotic Agent 237
	Gerald J. Roth, Rudolf Binder, Florian Colbatzky, Claudia Dallinger,
	Rozsa Schlenker-Herceg, Frank Hilberg, Lutz Wollin, John Park,
	Alexander Pautsch and Rolf Kaiser
11.1	Introduction 237
11.2	Structure-Activity Relationships of Oxindole Kinase Inhibitors
	and the Discovery of Nintedanib 238
11.3	Structural Research 244
11.4	Preclinical Pharmacodynamic Exploration 246
11.4.1	Kinase Inhibition Profile of Nintedanib 246
11.4.2	Oncology, Disease Pathogenesis and Mechanism of Action 246
11.4.3	Idiopathic Pulmonary Fibrosis, Disease Pathogenesis and Mechanism
	of Action 249
11.5	Nonclinical Drug Metabolism and Pharmacokinetics 250
11.6	Clinical Pharmacokinetics 251
11.7	Toxicology 252
11.8	Phase III Clinical Data 253
11.8.1	Efficacy and Safety of Nintedanib in IPF 253
11.8.2	Efficacy and Safety of Nintedanib in NSCLC 255
11.9	Other Oncology Studies 256
11.10	Conclusions 257
	References 258

Index 267