

Contents

Preface — v

About the Authors — vii

List of symbols — ix

1 Heat of detonation — 1

- 1.1 Basic knowledge of the heat of detonation — 1
- 1.1.1 Measurement of the heat of explosion — 2
- 1.1.2 Heat of detonation and heat of formation — 3
- 1.1.3 Relationship between the heat of combustion and heat of formation — 5
- 1.2 The assumed detonation products — 6
- 1.2.1 Simple methods for the prediction of the detonation products — 6
- 1.2.2 Prediction of the detonation products on the basis of computer codes and using quantum mechanical calculations for the prediction of Q_{det} — 10
- 1.3 New empirical methods for the prediction of Q_{det} without considering the detonation products — 11
- 1.3.1 Using the gas and condensed phase heats of formation of explosives — 11
- 1.3.2 Using structural parameters of high explosives — 14
- 1.3.3 Prediction of the heat of explosion in double-base and composite Modified double-base propellants — 15

2 Detonation temperature — 19

- 2.1 Adiabatic combustion (flame) temperature — 19
- 2.1.1 Combustion of fuels with air — 19
- 2.1.2 Combustion of propellants — 21
- 2.2 Detonation (explosion) temperature for explosives — 22
- 2.2.1 Measurement of detonation temperature — 22
- 2.2.2 Calculation of detonation temperature — 24

3 Detonation velocity — 31

- 3.1 Chapman–Jouguet (C–J) theory and detonation performance — 31
- 3.2 Ideal and nonideal explosives — 32
- 3.3 Measurement of the detonation velocity — 34
- 3.4 Prediction of the detonation velocity of ideal explosives — 36

3.4.1	Detonation velocity as a function of the loading density, element composition, and the condensed phase heat of formation of pure and composite explosives — 37
3.4.2	Detonation velocity as a function of the loading density, element composition, and the gas phase heat of formation of the pure component — 39
3.4.3	Detonation velocity as a function of the loading density and molecular structures of high explosives — 39
3.4.4	Maximum attainable detonation velocity — 40
3.4.5	Comparison of empirical correlations with computer codes — 41
3.5	Estimation of the detonation velocity of nonideal explosives — 45
3.5.1	Detonation velocity of ideal and nonideal explosives as a function of the loading density, element composition, and the condensed phase heat of formation of pure or composite explosives — 45
3.5.2	Using molecular structure to predict the detonation velocity of ideal and nonideal explosives — 48
3.5.3	Maximum attainable detonation velocity of $C_aH_bN_cO_dF_e$ and aluminized explosives — 49
4	Detonation pressure — 55
4.1	Relationship between the detonation pressure and the detonation velocity — 55
4.2	Measurement of the detonation pressure — 58
4.3	Estimation of the detonation pressure of ideal explosives — 58
4.3.1	Detonation pressure as a function of the loading density, element composition, and the condensed phase heat of formation of pure or composite explosives — 58
4.3.2	Detonation pressure as a function of the loading density, element composition and gas phase heat of formation of the pure component — 60
4.3.3	Detonation pressure as a function of the loading density and molecular structure of high explosives — 60
4.3.4	Maximum attainable detonation pressure — 61
4.4	Prediction of the detonation pressure of nonideal aluminized explosives — 61
4.4.1	Using the elemental composition for predicting the detonation pressure of explosives — 62
4.4.2	Detonation pressure of $C_aH_bN_cO_dF_eCl_f$ and aluminized explosives as a function of the loading density, element composition, and the condensed phase heat of formation of pure or composite explosives — 63

4.4.3	Using molecular structure for predicting the detonation pressure of ideal and aluminized explosives — 64
4.4.4	Maximum attainable detonation pressure of $C_aH_bN_cO_dFe$ explosives and aluminized explosives — 65
5	Gurney energy — 69
5.1	Gurney energy and Gurney velocity — 69
5.2	Gurney energy and the cylinder expansion test — 70
5.2.1	Cylinder test measurements — 71
5.2.2	Prediction methods of the cylinder test — 71
5.2.3	JWL equation of state — 73
5.3	Different methods for the prediction of the Gurney velocity — 74
5.3.1	Using the Kamlet-Jacobs decomposition products — 74
5.3.2	The use of elemental composition and the heat of formation — 75
5.3.3	The use of elemental composition without using the heat of formation of an explosive — 76
6	Power (strength) — 79
6.1	Different methods for measuring the power and brisance of an explosive — 80
6.2	Different methods for the prediction of power — 82
6.2.1	A simple correlation for the prediction of the volume of explosion gases of energetic compounds — 82
6.2.2	Power index — 83
6.2.3	Simple correlations for the prediction of power on the basis of the Trauzl lead block and the ballistic mortar tests — 84
6.3	Prediction of brisance — 88
6.3.1	Prediction of $f_{brisance}^+$ and $f_{brisance}^-$ for pure energetic materials — 89
6.3.2	Brisance for mixtures and aluminized explosives — 90
Answers to Questions and Problems — 93	
Appendix: Glossary of compound names and heats of formation for pure and composite explosives — 97	
References — 103	
Index — 109	