Contents

Forewo	ord v
	e —— xv
	contributing authors —— xxi
LISCO	contributing authors —— AAI
	ph Schick, Evgeny Zhuravlev, René Androsch, Andreas Wurm,
and Jür	n W.P. Schmelzer
1	Influence of Thermal Prehistory on Crystal Nucleation and Growth in
	Polymers —— 1
1.1	Introduction —— 1
1.2	State of the Art —— 2
1.2.1	Dependence of the Properties of Glass-forming Melts on Melt
	History —— 2
1.2.2	Polymer Crystallization —— 6
1.2.3	Differential Fast Scanning Calorimetry —— 9
1.3	Experimental —— 14
1.3.1	Samples —— 14
1.3.2	Suppression of Homogeneous Nucleation at Fast Cooling —— 16
1.3.3	Non-isothermal Ordering Kinetics —— 28
1.3.4	Isothermal Ordering Kinetics —— 36
1.3.5	Identification of Different Nuclei Populations —— 48
1.3.6	Enthalpy Relaxation and Crystal Nucleation in the Glassy State 52
1.3.7	Summary of Experimental Results and Conclusions —— 72
1.4	Illumination of the Nucleation and Growth Mechanism —— 74
1.4.1	Low-temperature Endotherms and Homogeneous Nucleation —— 74
1.4.2	Some Brief Theoretical Considerations —— 78
1.5	Conclusions and Outlook —— 80
Gerhar	d Wilde
2	Early Stages of Crystal Formation in Glass-forming Metallic Alloys —— 95
2.1	Introduction —— 95
2.2	Marginal Glass-formers —— 98
2.2.1	Nucleation versus Growth Control —— 98
2.2.2	Processing Pathway Modifications —— 101
2.2.3	Nucleation and Growth Kinetics —— 105
2.2.4	Characterization of the Amorphous Phase —— 109
2.2.5	Nanocrystal Formation at Temperatures Well Below T_a —— 115
2.3	Deformation-induced Nanocrystal Formation —— 124
2.4	Bulk Metallic Glasses —— 127

Conclusions and Hypotheses —— 131

2.5

Ivan G	itzow, Radost Pascova, Nikolai Jordanov, Stoyan Gutzov, Ivan Penkov,
Irena N	Narkovska, Jürn W.P. Schmelzer, and Frank-Peter Ludwig
3	Crystalline and Amorphous Modifications of Silica: Structure,
	Thermodynamic Properties, Solubility, and Synthesis —— 137
3.1	Introduction —— 137
3.2	Properties of Silica Modifications: Literature Search —— 140
3.2.1	Classical SiO ₂ -literature —— 141
3.2.2	Original Literature Sources on the Different Silica Modifications —— 141
3.2.3	Internet Search —— 142
3.3	Phase Diagram of SiO ₂ —— 142
3.3.1	Fenner's Classical Diagram —— 142
3.3.2	Flörke's Diagram —— 143
3.3.3	Contemporary $(p - T)$ -phase Diagrams of SiO_2 —— 144
3.4	Modifications of SiO ₂ and Their Synthesis —— 148
3.4.1	Mineralogical Characteristics of the SiO ₂ -modifications —— 148
3.4.2	Synthesis of Quartz —— 148
3.4.3	Synthesis and Stabilization of β -cristobalite —— 151
3.4.4	Synthesis of Keatite: Classical Aspects —— 159
3.4.5	Synthesis of Coesite —— 160
3.4.6	Stishovite: Synthesis and Thermal Stability —— 160
3.4.7	Synthesis of Amorphous Modifications of Silica —— 163
3.5	Structure and Thermodynamic Properties of the
	SiO ₂ -modifications —— 164
3.6	Solubility of the Different SiO ₂ -modifications —— 170
3.6.1	General Thermodynamic Dependencies —— 170
3.6.2	Solubility Diagram of SiO ₂ . Ostwald's Rule of Stages —— 175
3.6.3	Solubility of SiO ₂ : Size Effects —— 181
3.6.4	Different SiO ₂ -modifications at Hydrothermal Conditions:
	Technological Aspects —— 183
3.7	Resources of the Silica Modifications —— 186
3.7.1	Mineral Resources of Quartz —— 186
3.7.2	Plant Resources of Silica —— 187
3.7.3	Industrial Waste as Sources of Silica —— 188
3.7.4	Coesite and Stishovite as Impactite Remnants —— 188
3.8	Some Particularly Interesting Properties of Silica —— 189

Irina G. Polyakova

3.9

The Main Silica Phases and Some of Their Properties —— 197

General Discussion: Technical Perspectives —— 190

- 4.1 Introduction —— **197**
- 4.2 Specific Properties of Silica Resulting from the Electronic Structure of Silicon —— 198

4.2.1	Specific Properties of Silica Compounds and Differences as Compared			
	to Chemical Analogs: Silicon and Carbon —— 198			
4.2.2	Electron Structure of the Silicon Atom and its Interaction with Oxygen —— 201			
4.2.3	Consequences of π -Bonding in Silica —— 202			
4.2.4	Increase in Silicon Coordination Number as a Result of			
	s-p-d-hybridization —— 203			
4.2.5	Implication of s-p-d-hybridization for Chemical Reactions and Physical			
	Transformations of Silica —— 205			
4.3	Phases of Silica and Their Properties —— 207			
4.3.1	Dense Octahedral Silicas: High Pressure Phases —— 209			
4.3.2	Clathrasils: Friable Silica Phases —— 210			
4.3.3	Exception: Fibrous Silica —— 211			
4.3.4	Proper Silicas —— 211			
4.3.5	Main Crystalline Tetrahedral Silicas —— 213			
4.3.6	Amorphous Silica —— 223			
4.3.7	Polyamorphism —— 225			
4.4	Quartz and Some of Its Properties —— 228			
4.4.1	Enantiomorphism of Quartz —— 228			
4.4.2	Twins (Zwillinge) in Quartz —— 229			
4.4.3	Anisotropy of Quartz —— 232			
4.4.4	Thermal Expansion of Quartz —— 233			
4.4.5	High-Low or $(\alpha - \beta)$ -Transformation in Quartz —— 241			
4.4.6	Pressure-induced Amorphization of Crystalline Silica —— 245			
4.5	Hydrothermal Synthesis of Quartz —— 245			
4.5.1	Brief History —— 246			
4.5.2	Temperature Drop Method —— 247			
4.5.3	Main Problems of Hydrothermal Synthesis of Quartz —— 250			
4.6	Concluding Remarks —— 261			
4.7	Appendix: The Crystal Skulls —— 261			
Natalia	M. Vedishcheva and Adrian C. Wright			
5	Chemical Structure of Oxide Glasses: A Concept for Establishing			
	Structure–Property Relationships —— 269			
5.1	Introduction —— 269			
5.2	Structural Models —— 270			
5.3	Thermodynamic Approach —— 274			
5.4	Concept of Chemical Structure —— 277			
5.5	Short-range Order —— 281			
5.5.1	Na ₂ O-B ₂ O ₃ Glasses —— 281			
5.5.2	$Li_2O-B_2O_3$ Glasses and Melts —— 283			
5.5.3	Na ₂ O-SiO ₂ Glasses —— 287			
5.5.4	$Na_{2}O-B_{2}O_{3}-SiO_{2}$ Glasses —— 289			

x —	Cc	n	tε	n	ts
-----	----	---	----	---	----

5.6	Intermediate-Range Order —— 289		
5.7	Structure-Property Relationships —— 293		
5.8	Summary and Conclusions —— 296		
Boris Z	. Pevzner and Sergey V. Tarakanov		
6	Bubbles in Silica Melts: Formation, Evolution, and Methods of		
	Removal 301		
Part I:	Experimental Data and Basic Mechanisms —— 301		
6.1	Introduction —— 301		
6.2	Sources of Bubbles in Silica Melt and Glass —— 302		
6.2.1	Brief Account of the Technology of Silica Glass Production —— 302		
6.2.2	Raw Materials as a Source of Bubbles —— 303		
6.2.3	Furnace Atmosphere as a Source of Bubbles —— 305		
6.2.4	Interaction of Heaters and Form-shaping Equipment with the Melt as Source of Bubbles —— 308		
6.2.5	Concentrations of Impurities, Including Dissolved Gases, in Commercial Silica Glasses —— 308		
6.2.6	Experimental Study of Formation and Evolution of Bubbles in Silica Melts —— 309		
6.3	Physico-chemical Properties of Silica Melts Influencing the Formation and Evolution of Gas Bubbles —— 312		
6.3.1	Surface Tension —— 312		
6.3.2	Density —— 312		
6.3.3	Viscosity —— 313		
6.3.4	Solubility and Diffusion of Gases —— 315		
6.4	Summary to Part I —— 324		
Part II:	Theoretical Analysis and Computer Simulation of the Process —— 325		
6.5	Introduction to Part II —— 325		
6.5.1	Main Stages of Fusion of Powdered Silica under Heating and Evolution of Bubble Structure —— 325		
6.5.2	Selection of Parameters for the Temperature Dependence Equations that describe the Properties of the Silica Melt Affecting the Kinetics of the Process —— 326		
6.6	Micro-rheological Model and Computer Simulation of the Process —— 327		
6.6.1	The Micro-rheological Model of Powder Sintering and Structuring of a Porous Body —— 328		
6.6.2	Influence of Some Technological Factors on Formation of Bubble Structure under Heating of Powdered Silica Glass: Computer Simulation of the Process —— 335		
6.7	Summary to Part II —— 343		

Part III:	Mathematical Modeling and Computer Simulation of the Behavior of
	Gas-Filled Bubbles in Silica Melts —— 345
6.8	Introduction —— 345
6.9	Behavior of Isolated Bubbles —— 347
6.10	Behavior of Solitary Gas-filled Bubbles under Mass Exchange with the Melt —— 348
6.11	Two-phase Approach to the Description of Mono-disperse Ensembles of Bubbles —— 351
6.12	Two-phase Approach to the Description of Poly-disperse Ensembles of Bubbles —— 356
6.13	Diffusion of the Dissolved Gas in the Melt —— 360
6.14	Relative Motion of Bubbles in the Melt: Modification of the
	Mathematical Model —— 364
6.15	Flow of the Melt Governed by the Motion of the Bubbles: Complete
	System of Equations for Modeling of the Behavior of Gas-filled Bubble
	Ensembles in the Melt —— 369
6.16	Summary to Part III —— 372
Victor K	Leko
7	Regularities and Peculiarities in the Crystallization Kinetics of Silica
•	Glass — 377
7.1	Introduction —— 377
7.2	Literature Review —— 381
7.3	Development of Experimental Techniques —— 391
7.4	Basic Phenomenological Features of the Crystallization
, . .	Processes —— 394
7.5	Influence of the Degree of Silica Reduction —— 398
7.6	Influence of Concentration of "Structural Water" —— 402
	Influence of the Degree of Fusion Penetration of Quartz or Cristobalite
7.7	Particles on Crystallization of Quartz Glasses —— 405
7.0	Influence of Surface Contamination on Crystallization Kinetics —— 408
7.8	·
7.9	Influence of the Composition of the Gas Medium on Crystallization of
704	Quartz Glass —— 411
7.9.1	Introductory Comments —— 411
7.9.2	On Crystallization in Dry Gas Media —— 411
7.9.3	Experiments on Crystallization in an Atmosphere Containing Water Vapor —— 413
7.9.4	Crystallization of Quartz Glass in the Atmosphere of Gases in
	Equilibrium with the Melt —— 414
7.10	Influence of the Drawing Process on the Crystallization Kinetics of Tubes of Quartz Glasses —— 417
7.11	Summary of Results and Discussion —— 422
7.11.1	Introductory Remarks —— 422
	HILLOGUELUIY NCHIMINA TAA

7.11.2	Influence of Surface Reactions on Crystallization —— 423
7.11.3	Relation Between Crystallization Rate and Viscosity —— 427
7.12	Conclusions —— 435
	M. Fokin, Alexander Karamanov, Alexander S. Abyzov, Jürn W.P. Schmelzer,
_	r D. Zanotto
	Stress-induced Pore Formation and Phase Selection in a Crystallizing
9	Stretched Glass —— 441
8.1	Introduction —— 441
8.2	Stress Induced Pore Formation and Phase Selection in a Crystallizing Stretched Glass of Regular Shape —— 443
8.2.1	The Model 443
8.2.2	Experiments —— 445
8.2.3	Theoretical Interpretation: Classical Nucleation Theory —— 452
8.2.4	Theoretical Interpretation: Generalized Gibbs Approach —— 460
8.3	Sintered Diopside-albite Glass-ceramics Forming
	Crystallization-induced Porosity —— 467
8.3.1	Introduction —— 467
8.3.2	Experimental —— 468
8.3.3	Results and Discussion —— 470
Vladimir	G. Baidakov
9 (Crystallization of Undercooled Liquids: Results of Molecular Dynamics
9	Simulations —— 481
9.1	Introduction —— 481
9.2	Thermodynamics and Kinetics of Crystal Formation —— 484
9.3	Description of the Systems under Investigation in the Present
	Study —— 487
9.3.1	Models —— 487
9.3.2	Phase Diagram —— 488
9.4	Methods of Modeling of Spontaneous Crystallization —— 489
9.4.1	Mean Life-time Method —— 489
9.4.2	Mean First-passage Time Method —— 493
9.4.3	Transition Interface Sampling —— 496
9.5	Temperature Dependence of the Interfacial Free Energy Density
	Crystal-liquid for Planar Interfaces —— 498
9.5.1	Triple Point —— 498
9.5.2	Melting Line —— 499
9.6	Kinetics of Crystallization in a cLJ-system —— 503
9.6.1	Crystallization Parameters —— 503
9.6.2	Nucleation Rate —— 507
9.6.3	Comparison of Homogeneous Nucleation Theory with Computer Simulation —— 508

9.6.4	Nucleation in the Region Below the Endpoint of the Melting Line —— 509
9.7	Kinetics of Crystallization in the mLJ-system and Free Energy of the Clusters of the Crystalline State —— 512
9.7.1	Pressure Dependence of the Nucleation Rate —— 512
9.7.2	Temperature Dependence of the Nucleation Rate —— 512
9.8	Discussion and Conclusions —— 517
7.0	Discussion and Conclusions 51)
Gyan P. Jo	ohari and Jürn W.P. Schmelzer
10 (Crystal Nucleation and Growth in Glass-forming Systems: Some New
F	Results and Open Problems 521
10.1	Introduction —— 522
10.2	Consequences of Stochastic Structural Fluctuations in Ultraviscous
	Melts 527
10.2.1	Structure Fluctuations, Nucleation and Distribution of Relaxation
	Times —— 527
10.2.2	Structure Fluctuations and the Notion of Disordered Cluster
	Formation —— 528
10.3	A Case Study: Crystallization Kinetics of a Typical Metal Alloy
	Melt 535
10.3.1	General Considerations —— 535
10.3.2	One Experimental Example —— 537
10.3.3	Theoretical Interpretation in Terms of the KJMA-approach —— 540
10.3.4	Crystallization on Rate Heating —— 543
10.3.5	Differences Between Isothermal and Rate-heating
	Crystallization —— 546
10.3.6	Origin of the Second Peak for Crystallization on Rate-heating —— 548
10.4	Thermal Effects of Crystallization on Its Kinetics —— 550
10.4.1	General Remarks —— 550
10.4.2	Rayleigh-Bénard Convection Effects —— 551
10.4.3	Marangoni or Thermo-capillarity Convection Effect 553
10.5	Classical and Generalized Gibbs' Approaches to Cluster Formation and
	Growth 554
10.5.1	Basic Ideas —— 554
10.5.2	Application to Nucleation —— 556
10.5.3	Application to Cluster Growth Processes —— 562
10.5.4	Thermodynamics versus Kinetics: Ridge Crossing —— 563
10.6	Specific Interfacial Energy and the Skapski-Turnbull Relation —— 568
10.6.1	General Approach to the Determination of the Specific Interfacial
	Energy: Taylor Expansion —— 568
10.6.2	Stefan's Rule and Skapski-Turnbull Relation: Some Interpretation and
	Extension to Thermodynamic Non-equilibrium States —— 570

xiv	 Content	2

10.7	Dependence of Crystal Nucleation and Growth Processes on		
	Pre-history —— 573		
10.7.1	Introductory Comments —— 573		
10.7.2	Kinetic Criteria for Glass-formation —— 574		
10.7.3	On the Dependence of the State of the Melt on Cooling and Heating Rates and Its Relevance for Crystal Nucleus Formation and Growth —— 578		
10.8	Conclusions —— 579		

Index —— 587