

Table of Contents

Preface — V

Sreekanth Thota

1	Overview of chemical drug design — 1
1.1	Drug design — 1
1.2	Rational drug design — 2
1.3	Ligand-based drug design — 5
1.4	Structure-based drug design — 6
1.5	Pharmacophore-based approaches — 8
1.6	Structure-based approaches — 8
1.7	New lead generation — 8
1.8	Structure evaluation — 9
1.9	Future directions — 9

Meenakshi Rajpoot, Rajasri Bhattacharyya, Girish Kumar Gupta, Anil K. Sharma

2	Drug designing in novel drug discovery: Trends, scope and relevance — 15
2.1	Introduction — 15
2.2	Drug designing — 16
2.3	Applications of SBDD — 24
2.4	Applications of LBDD — 25
2.5	Role of cheminformatics in drug discovery — 26
2.6	Conclusion — 26

Sumitra Nain, Garima Mathur, Girish Kumar Gupta, Sarvesh Paliwal

3	Structure- and ligand-based approaches in drug designing — 31
3.1	Drug discovery — 31
3.2	Drug design — 33
3.3	Drug designing techniques — 33
3.4	Quantitative Structure-Activity Relationship (QSAR) — 35
3.5	Physicochemical parameters — 35
3.6	Biological parameters — 44
3.7	Statistical terms in QSAR — 48

Luciana Scotti, Francisco J. B. Mendonça Júnior, Marcelo S. da Silva, Marcus T. Scotti

4	Drug design applied to natural products against neglected diseases — 53
4.1	Natural products — 53
4.2	Medicinal chemistry — 56
4.3	Docking — 58
4.4	Neglected diseases — 59
4.5	Final considerations — 79

Manu Sharma

5 **Natural product hybrid compounds as drug leads — 87**
5.1 Introduction — 87
5.2 Naturally occurring hybrids/conjugates of natural products — 88
5.3 Synthetic hybrids of whole natural products — 91
5.4 Conclusion — 102

Komarla Kumarachari Rajasekhar

6 **Drug metabolism — 107**
6.1 Introduction — 107
6.2 Phase I Metabolic reactions — 108
6.3 Oxidative mechanisms — 114
6.4 Reductive reactions — 139
6.5 Hydrolytic reactions — 145
6.6 Phase II conjugation reactions — 148
6.7 Factors affecting drug metabolism — 156

Seema Patel and Girish Kumar Gupta

7 **Mistletoe lectin: A promising cancer therapeutic — 165**
7.1 Introduction — 165
7.2 Anticancer potency of bacteria/plant lectins — 167
7.3 Anticancer potency of mistletoe and the underlying mechanisms — 168
7.4 Mistletoe lectins — 170
7.5 Future directions — 174
7.6 Concluding remarks — 175

Tamara Angelo and André São Pedro

8 **Antipsychotics — 183**
8.1 Introduction — 183
8.2 History — 183
8.3 Etiology of schizophrenia and related psychoses — 184
8.4 Potential mechanism of action of antipsychotics — 185
8.5 Structure-activity relationships and pharmacology of the drugs — 186
8.6 Research into future treatments for schizophrenia and related psychoses — 194

Prerna Sarup

9 **Chemometric analysis: A novel tool for herbal drug analysis and designing — 199**
9.1 Introduction — 199
9.2 Experimental — 201
9.3 Data analysis and quality evaluation — 202

9.4 Results and discussion — 204
9.5 Conclusion — 212

Subash Chandra Sahoo, Ramesh Kataria and S.K. Mehta

10 Copper and its complexes: A pharmaceutical perspectives — 215
10.1 Introduction — 215
10.2 Source of dietetic copper — 217
10.3 Recommended concentration of copper for human diet — 217
10.4 Copper consumption and suggestions — 218
10.5 Mechanism of copper transport in humans — 218
10.6 Copper deficiency and symptoms — 219
10.7 Copper metabolism and major diseases — 220
10.8 Copper metabolism and hypothesized health problems — 223
10.9 Copper complexes as an emerging tool in pharmaceutical sciences — 231
10.10 Concluding remarks — 236

Sunil Kumar, Madhuri T. Patil, Ramesh Kataria, Deepak B. Salunke

11 Thiazole: A privileged scaffold in drug discovery — 243
11.1 Introduction — 243
11.2 Synthetic routes for the construction of the thiazole ring — 247
11.3 Thiazole as privileged scaffold in synthetic drugs — 252
11.4 Ritonavir — 252
11.5 Nitazoxanide — 259
11.6 Sulfathiazole — 260
11.7 Thiabendazole — 262
11.8 Fatostatin — 263
11.9 Dasatinib — 265
11.10 Tiazofurin — 267
11.11 CYC116 — 268
11.12 NCH-31 — 269
11.13 TAK-715 — 271
11.14 Meloxicam — 272
11.15 Nizatidine — 274
11.16 Famotidine — 275
11.17 Conclusion — 277

Index — 283