Contents

1			ion	
2	Rev	view o	f Damage Mechanics	15
	2.1		opment of Damage Mechanics	
	2.2		y of Damage Phenomena	
		2.2.1	Different Damage Definitions due to Different	
			Measurements	17
		2.2.2	Damage Described by Micro-cracks and Macro-cracks	21
		2.2.3	Damage Descriptions by Constrained Cavity	
			Nucleation and Growth	24
		2.2.4	Damage State Described by Continuum Cavity	
			Growth	24
		2.2.5	Damage State Described by Ductile Void Growth	24
	2.3	Surve	y of Constitutive Relations for Damage	27
		2.3.1	Constitutive Relations for Damaged Materials	27
		2.3.2	Constitutive Models for Brittle Damage	29
		2.3.3	Constitutive Models for Ductile Damage	29
		2.3.4	Constitutive Models for Damage due to Super-Plastic	
			Void Growth	31
		2.3.5	Constitutive Models for Creep Damage	32
		2.3.6	Constitutive Models for Anisotropic Damage	33
	2.4	Surve	y of Kinetic Equations for Damaged Materials	35
		2.4.1	Kinetic Behaviors due to Micro-Structural Changes	35
		2.4.2	Creep Damage Growths	36
		2.4.3	Damage Evolution due to Cavity Nucleation and	
			Growth	37
		2.4.4	Damage Evolution due to Super-Plastic Void Growth	
		2.4.5		
		2.4.6		41
	$\operatorname{Ref}\epsilon$	erences		43

v	Contenta
\mathbf{X}	Contents

3	Bas		sotropic Damage Mechanics	
	3.1	Introd	uction	59
	3.2	Isotro	pic Damage Variable	59
	3.3	Conce	pt of Effective Stress	60
	3.4		ent Basic Hypothesis of Damage Mechanics	61
		3.4.1	Hypothesis of Strain Equivalence	61
		3.4.2	Hypothesis of Stress Equivalence	63
		3.4.3	Hypothesis of Elastic Energy Equivalence	64
		3.4.4	Damage Variables Based on the Two Hypotheses	68
	3.5		nodynamic Aspects	70
	0.0	3.5.1	First and Second Laws of Thermodynamics	71
		3.5.2	Thermodynamic Potential and Dissipation Inequality	72
		3.5.3	Dissipation Potential and Dual Relationship	74
	3.6		ge Strain Energy Release Rate	75
	3.7		pic Damage Model of Double Scalar Variables	
	0.1	3.7.1	Alternative Approach of Isotropic Damage Variables	
		3.7.2	Different Forms of Elastic Damaged Stress-Strain	00
		0.1.2	Relations	87
		3.7.3	Isotropic Double Scalar Damage Variables	
		3.7.4	Strain Energy Release Rate with Double Scalar	00
		0.1.1	Damage Variables	96
		3.7.5	Discussions of Characteristic of Double Scalars	50
		0.1.0	Damage Model	102
		3.7.6	Modeling of Alternative Double Scalar Damage	102
		0.1.0	Theory	108
	3.8	Gener	alized Theory of Isotropic Damage Mechanics	
	0.0	3.8.1	Modelling of Generalized Damage Constitutive	
		3.8.2	Discussion and Analysis of Generalized Damage Model.	
		3.8.3	Aspects of Damage Effective Functions	
		3.8.4	Dissipative Potential and Damage Evolution for	120
		0.0.1	Generalized Theory	130
	Refe	erences	denotalized Theory	
	16010	CHCCS	***************************************	102
4	Isot		Elasto-Plastic Damage Mechanics	
	4.1		luction	
	4.2	Assoc	iated Flow Rule Model	136
		4.2.1	Re-expression of Lemaitre's Model	136
		4.2.2	Damage Evolution Equations	138
		4.2.3	Evaluated Damage Variables by Different Hypothesis	
			Models	
	4.3	Non-A	Associated Flow Rule Model	144
		4.3.1	Basic Equations of Elasto-Plasticity for Isotropic	
			Damaged Materials	144
		4.3.2	Static Elasto-Plastic Damage Model without Damage	
			Growth	146

4.3.3 Elasto-Plastic Model with Damage Growth	1 47
4.3.4 Nonlinear Kinetic Evolution Equations of	141
Elasto-Plastic Damage	1.40
4.3.5 Model of Combined Dissipation Potential	
4.4 Damage Plastic Criteria for Numerical Analysis	
4.4.1 Damage-Plastic Potential Functions	
4.4.2 Damage-Plastic Yield Function	
4.4.3 Different Modeling of Damage Yield Criteria	
4.4.4 Expression for Numerical Computation	
4.5 Shakedown Upper Bound Model of Elasto-Plastic Damage 1	
4.5.1 Simplified Damage Constitutive Model	
4.5.2 Upper Bound on Damage of Structures	
4.6 Gradual Analysis of Double Scale Elasto-Plastic Damage	
Mechanics	72
4.6.1 Gradual Constitutive Relation Coupled with Double	
Scale Damage	72
4.6.2 Damage Evolution Criterion Based on Double Scale of	
Damage	74
4.6.3 Damage Evolution Equation—Time Type	77
4.6.4 Basic Equations and Boundary Conditions for Solving	
Problems	.81
4.7 Analysis of Coupled Isotropic Damage and Fracture	
Mechanics1	83
4.7.1 Gradual Analysis for Developing Crack under	
Monotonous Loading1	.83
4.7.2 Basic Equation of Gradual Field near Developing	
Crack1	.87
4.7.3 Boundary Condition and Solution Method of Studied	^1
Problem1	.91
4.8 Verify Isotropic Damage Mechanics Model by Numerical	ഹ
Examples	
4.8.1 Example of Bar Specimen	.93
4.8.2 Compression of Plastic Damage Behavior Based on Different Hypothesis	ne.
4.9 Numerical Application for Damaged Thick Walled Cylinder 1	
4.9.1 Plastic Damage Analysis for Damaged Thick Walled	.90
Cylinder	
4.9.2 Analysis for Local Damage Behaviors	01
4.9.3 Analysis for Damaged Thick Walled Cylinder Based	.01
on Shakedown Theory	04
4.9.4 Numerical Results of Gradual Analysis for Developing	
Crack under Monotonous Loading	808
References	

5	Bas	is of A	Anisotropic Damage Mechanics217
	5.1	Introd	luction
	5.2	Aniso	tropic Damage Tensor218
		5.2.1	Micro description of Damage on Geometry
		5.2.2	Damage Tensor Associated with One Group of Cracks $$. 221
		5.2.3	Damage Tensor Associated with Multi-Groups of
			Cracks
	5.3	Princi	pal Anisotropic Damage Model225
		5.3.1	Three Dimensional Space
		5.3.2	Two Dimensional Space
	5.4	Decor	mposition Model of Anisotropic Damage Tensor232
		5.4.1	Review of Definition of Damage Variable
		5.4.2	Decomposition of Damage Variable in One Dimension 233
		5.4.3	Decomposition of Symmetrized Anisotropic Damage
			Tensor in 3-D
	5.5	Basic	Relations of Anisotropic Damage Based on
		Thern	nodynamics
		5.5.1	First and Second Laws of Thermodynamics of
			Anisotropic Materials
		5.5.2	Thermodynamic Potential and Dissipation Inequality
			in Anisotropy
		5.5.3	Dissipation Potential and Dual Relationship in
			Anisotropy
		5.5.4	Damage Strain Energy Release Rate of Anisotropic
			Damage
	5.6		ic Constitutive Model for Anisotropic Damaged Materials 247
		5.6.1	Elastic Matrix of Damaged Materials in Three
			Dimensions
		5.6.2	Elastic Matrix of Damaged Materials in Two
			Dimensions
		5.6.3	Property of Anisotropic Damage Elastic Matrix255
	5.7		ent Models of Damage Effective Matrix
		5.7.1	Principal Damage Effective Matrix in Different
			Symmetrization Schemes
		5.7.2	Matrix [Ψ] Expressed by Second Order Damage
	- 0	D. C	Tensor in Different Schemes
	5.8		ent Modeling of Damage Strain Energy Release Rate 279
		5.8.1	Overview of the Topic
		5.8.2	Modification of $[\Psi]$ Based on Different Symmetrization
		F 0 9	Models
		5.8.3	Different Forms of Damage Strain Energy Release Rate 281
	5.9	5.8.4	Discussion and Conclusions
	5.9		ts of Symmetrization of Net-Stress Tensor in Anisotropic
			age Models
		0.9.1	Review of Symmetrization Models

	5.9.2	Effects of Symmetrization on Net-Stress Tensor 291
	5.9.3	Influence of Symmetrization on Deviatiom Net-Stress
	1	Tensor
	5.9.4	Effects of Symmetrization on Net-Stress Invariant 295
	5.9.5	Effects of Symmetrization on Net Principal Stresses
		and Directions
	5.9.6	Effects of Symmetrization on Damage Constitutive
		Relations
5.10		e Damage Evolution Modeling
		Damage Kinetic Equations
5.11		Anisotropic Damage Model by Numerical Modeling \dots 311
	5.11.1	Stiffness Matrix of Anisotropic Elastic Damage Model
		in F.E.M
	5.11.2	Numerical Verifying for Elastic Damage Constitutive
		Relationship
		Numerical Verifying for Symmetrization Comments 314
5.12		rical Application to Analysis of Engineering Problems 322
	5.12.1	Anisotropic Damage Analysis for Excavation of
		Underground Cavern322
	5.12.2	Damage Mechanics Analysis for Stability of Crag
		Rock Slope
	5.12.3	Damage Mechanics Analysis for Koyna Dam due to
		Seismic Event
Refe		
	rences	Seismic Event
	rences tle Da Introd	Seismic Event
Brit	rences tle Da Introd	Seismic Event
Brit 6.1	rences tle Da Introd	Seismic Event
Brit 6.1	rences tle Da Introd Gener	Seismic Event
Brit 6.1	rences ttle Da Introd Gener 6.2.1	Seismic Event
Brit 6.1	rences Introd Gener 6.2.1	Seismic Event
Brit 6.1	rences Introd Gener 6.2.1	Seismic Event
Brit 6.1 6.2	rences ttle Da Introd Gener 6.2.1 6.2.2 Applie	Seismic Event
Brit 6.1 6.2	rences ttle Da Introd Gener 6.2.1 6.2.2 Applie	Seismic Event
Brit 6.1 6.2	rences ttle Da Introd Gener 6.2.1 6.2.2 Applie Mater	Seismic Event
Brit 6.1 6.2	rences ttle Da Introd Gener 6.2.1 6.2.2 Applie Mater	Seismic Event
Brit 6.1 6.2	rences ttle Da Introd Gener. 6.2.1 6.2.2 Applic Mater 6.3.1	Seismic Event
Brit 6.1 6.2	rences ttle Da Introd Gener. 6.2.1 6.2.2 Applic Mater 6.3.1 6.3.2	Seismic Event
Brit 6.1 6.2	rences ttle Da Introd Gener 6.2.1 6.2.2 Applic Mater 6.3.1 6.3.2 6.3.3 6.3.4	Seismic Event
Brit 6.1 6.2	rences ttle Da Introd Gener 6.2.1 6.2.2 Applic Mater 6.3.1 6.3.2 6.3.3 6.3.4 Micro-	Seismic Event
Brit 6.1 6.2	rences ttle Da Introd Gener 6.2.1 6.2.2 Applic Mater 6.3.1 6.3.2 6.3.3 6.3.4 Micro-	Seismic Event
Brit 6.1 6.2	rences ttle Da Introd Gener. 6.2.1 6.2.2 Applic Mater 6.3.1 6.3.2 6.3.3 6.3.4 Micro- Theory	Seismic Event

XIV Contents

		6.4.4	1	
			Many Slits	. 393
		6.4.5	Critical State and Percolation Theory	
		6.4.6	Higher Order Models for Rectilinear Slits	
	6.5	Non-li	near Brittle Damage Model of Porous Media	. 415
		6.5.1	Relationship between Damage and Porosity	. 415
		6.5.2	Brittle Damage Model Based on Modified	
			Mohr-Coulomb Porous Media	. 417
		6.5.3	Influence of Damage on Shear Strength of Porous	
			Media	
	6.6		e Damage Model for Crack-Jointed Rock Mass	
		6.6.1	Aspects of Brittle of Crack-Jointed Rock Mass	
		6.6.2	Constitutive Model of Crack-Jointed Rock Mass	. 435
		6.6.3	Determination of Pressure and Shear Conductive	
			Coefficients C_n and C_s	. 442
		6.6.4	Energy Equivalent Model of Brittle Damage for	
			Jointed Rock Mass	. 447
		6.6.5	General Model of Constitutive Equations for Jointed	
			Rock Mass	.452
		6.6.6	Brittle Elasto-plastic Damage Model for Jointed Rock	
			Mass	
		6.6.7		
	Rete	erences		463
7	Ani	isotror	oic Elasto-plastic Damage Mechanics	460
•	7.1		luction	
	7.2		re Models of Anisotropic Damaged Materials	
	•	7.2.1		
		7.2.2		
		7.2.3		
	7.3		nce of Anisotropic Orientation	
		7.3.1		
			Influence of Orientation on Hoffman's Model	
	7.4		otropic Damage Strain Energy Release Rate	
	7.5		tropic Damage Elasto-plastic Theory	
		7.5.1	Elasto-plastic Equations without Damage Growth	
		7.5.2	Elasto-plastic Equations with Damage Growth	
		7.5.3	Equivalent Principle of Damage State	
	7.6		tropic Hardening Model	
	7.7		tropic Elasto-plastic Damage Equations for Numerical	
			rsis	505
	7.8		led Damage and Plasticity in General Effective Tensor	
			ds	510
		7.8.1	Stress Transformation Based on Configurations	
		7.8.2	Strain State and Strain Transformation	

			Contents	XV
		7.8.3	Coupled Constitutive Model	. 520
		7.8.4	Application of Anisotropic Gurson Plastic Damage	.020
		*	Model to Void Growth	. 527
		7.8.5	Corotational Effective Spin Tensor	
	7.9	Elasto	o-plastic Damage for Finite-Strain	
		7.9.1	Configuration of Deformation and Damage	
		7.9.2	Description of Damage Tensors	
		7.9.3	Corresponding Damage Effective Tensor for	
			Symmetrized Model II	. 533
		7.9.4		
		7.9.5	· · · · · · · · · · · · · · · · · · ·	
		7.9.6	Damage Behavior of Elasto-plastic Finite Deformation	
	7.10	Nume	erical Results in Applications	
			Perforated Specimen	
			Cracked Plate Subjected to Tension	
	7.11		rical Analysis for Anisotropic Gurson's Plastic Damage	
			l	. 564
		7.11.1	Plasticity of Gurson's Yield Criterion	. 564
			An Application of Hill Quadratic Anisotropic Yield	
			Criterion	. 565
		7.11.3	Anisotropic Gurson's Plastic Model Based on Hill's	
			Failure Criterion	. 568
		7.11.4	Finite Element Analysis for Voids Growth of Gurson's	
			Plastic Model	
	Refe	erences		. 586
8	The	orv of	Visco-elasto-plastic Damage Mechanics	. 589
_	8.1	•	luction	
	8.2		nodynamics of Visco-elastic Damage Mechanics	
		8.2.1	General Thermodynamics Framework	
		8.2.2		
		8.2.3	Visco-elasticity with Temperature Coupled to Damage	
	8.3	Asym	ptotic Expansion of Visco-plastic Damage Mechanics	
		8.3.1	About Visco-plastic Damage	. 610
		8.3.2		
		8.3.3	Recursive Integration Method for Visco-plastic Damage	617
			Outline of Visco-plastic Damage Equations and	
			Algorithm	. 624
	8.4	Integr	ated Model of Isotropic Creep Damage	. 627
		8.4.1	Uniaxial Creep Damage Behavior	. 627
		8.4.2	Multiaxial Creep Damage Modeling	. 630
		8.4.3	Generalization of Damage Creep Law	.635
	8.5		elasto-plastic Damage Mechanics Based on Minimum	
		Dissip	ative Energy Principle	. 637
		8.5.1	Generalized Principle of Minimum Dissipative Energy	. 637

9

		8.5.2	Theoretical Modeling of Visco-elasto-plastic Damage Mechanics
		8.5.3	Numerical Modeling of Visco-elasto-plastic Damage
		0.0.0	Mechanics
c) E	Conon	
C	3.6		alized Variational Principles of Visco-elastic Damage
		8.6.1	ems
			Preferences of Variational Principles
		8.6.2	Generalized Variational Principles for Visco-elastic
		0.60	Damage Mechanics
_	. =	8.6.3	Application of Generalized Variational Principle
5	3.7		rical Studies on Visco-elasto-plastic Damage Behaviors 662
		8.7.1	Application of Coupled Visco-elastic Damage Model
		0 = 0	to Swirl-Mat Composites
		8.7.2	Observation of Asymptotic Integration for
			Visco-plastic Damage Problems
		8.7.3	Numerical Studies of Visco-plastic Damage Behavior
_		T-0"	in Simple Structures
8	3.8		s of Localization Approach to Creep Fracture Damage 677
		8.8.1	
		8.8.2	Numerical Study for Effects of Localization Approach
			to Creep Damage
_		8.8.3	Regularizations to Suppress Mesh-dependence687
8	3.9		eering Applications of Visco-elasto-plastic Damage
		Mecha	
		8.9.1	F. E. Modeling of Thermal Visco-elasto-plastic
		0.00	Damage Behavior
		8.9.2	Applied Example of Four-point Bending Tests of
			Stiffened Plates
		8.9.3	Applied Example for Analysis of Pylon Members with
		004	a Bolt Hole
		8.9.4	Two Dimensional Dynamic Finite Element Analysis
			for Visco-elasto-plastic Damage in Longtan Concrete
		•	Gravity Dam Project
ì	Rete	rences	715
1	Dvr	amie	Damage Problems of Damaged Materials723
			luction
	9.2		mentals of Dynamic Damage Mechanics724
•	<i>)</i> . <u>~</u>	9.2.1	Basic Equations of Dynamic Evolutional System724
		9.2.2	Variation Principle of Dynamic Evolutional
		3.4.4	Continuous System
		9.2.3	V
		J.2.J	Unified Description of Dynamic Evolutionary Continuous System 728
		9.2.4	Continuous System
		9.4.4	<u> </u>
			Evolutionary System

	9.2.5	Schemes of Numerical Solutions
9.3	Dynai	mic Damage Evolutionary Equations
	9.3.1	Damage Growth Equations
	9.3.2	Concept of Damage Propagation
9.4	Nume	rical Method of Analysis for Dynamic Damage Problems 738
	9.4.1	Governing Equations of Motion for Anisotropic
		Damaged Structures
	9.4.2	Finite Element Discretization of Dynamic Damaged
		Body
	9.4.3	Finite Element Discretization of Dynamic Damage
		Evolution
	9.4.4	Damping for Damaged Materials
9.5	Wave	Propagation in Damaged Media and Damage Wave749
	9.5.1	Introduction of Wave with Damage
	9.5.2	Wave Propagation Characters in Damaged Media 750
	9.5.3	Analysis for Examples of One-Dimensional Wave
		Propagation in Damaged Media
	9.5.4	Kinematic Wave Applied to Crack Tips777
	9.5.5	Damage Wave in Elastic-Brittle Materials784
9.6	Analy	sis for Dynamic Response of Damaged Simple
	Struct	ures797
	9.6.1	An Introduction of Dynamic Response of Damaged
		Structures
	9.6.2	Response of Damaged Simple Structure under
		Dynamic Loading800
	9.6.3	Lagrangian F E Analysis for Dynamics of Damaged
		Deep Beam
	9.6.4	Damage Evolution in Deep Beam during Dynamic
		Response
	9.6.5	Influence of Damage on Dynamic Behavior820
9.7	Dynar	nic Damage Analysis for Brittle Rock and Its
	Applie	eation832
	9.7.1	Purpose of Brittle Rock Dynamic Damage Studies 833
	9.7.2	Wave Propagation in Brittle Jointed Rock
	9.7.3	Analysis for Dynamic Damage in Micro-jointed Rock
		Mass839
	9.7.4	Impact Response Behavior of Dynamic Damaged
		Brittle Rock842
	9.7.5	Example of Numerical Applications and Validation 845
	9.7.6	Fragmentation of Brittle Rock Due to Dynamic
		Damage849
9.8	Engin	eering Application of Dynamic Damage Analysis858
	9.8.1	Dynamic Damage Analysis for Earthquake Responses
		of Arch Dams858

XVIII Contents

9.8.2	Dynamic Analysis of Brittle Damage in Arch Dam	
	Due to Blast Load	880
9.8.3	Damage Analysis for Penetration of Limited-thickness	
	Concrete Targets	892
References		900
$\mathbf{Index} \ldots \ldots$		911