Contents

Preface XIII List of Contributors XV

1	Synthesis of Saturated Five-Membered Nitrogen Heterocycles
	via Pd-Catalyzed C-N Bond-Forming Reactions 1
	John P. Wolfe, Joshua D. Neukom, and Duy H. Mai
1.1	Introduction 1
1.2	Pd-Catalyzed Amination of Aryl Halides 1
1.3	Synthesis of Saturated Nitrogen Heterocycles via Alkene, Alkyne,
	or Allene Aminopalladation Reactions 3
1.3.1	Pd ^{II} -Catalyzed Oxidative Amination of Alkenes 4
1.3.2	Pd-Catalyzed Hydroamination Reactions of Alkenes and Alkynes 6
1.3.3	Pd ⁰ -Catalyzed Carboamination Reactions of Alkenes 8
1.3.4	Pd ^{II} -Catalyzed Carboamination Reactions of Alkenes 10
1.3.5	Pd-Catalyzed Carboamination Reactions of Alkynes, Allenes,
	and Dienes 10
1.3.6	Vicinal Difunctionalization of Alkenes and Allenes 13
1.4	Synthesis of Nitrogen Heterocycles via Intermediate
	π-Allylpalladium Complexes 16
1.4.1	Reactions Involving Oxidative Addition of Allylic Electrophiles 16
1.4.2	Reactions Involving π -Allylpalladium Intermediates Generated
	via Alkene Carbopalladation 19
1.4.3	Reactions Involving Aminopalladation of 1,3-Dienes 21
1.4.4	Generation of Allylpalladium Intermediates through C-H
	Activation 21
1.5	Synthesis of Nitrogen Heterocycles via Pd-Catalyzed
	1,3-Dipolar Cycloaddition Reactions 22
1.6	Synthesis of Nitrogen Heterocycles via Carbonylative Processes 23
1.6.1	Transformations Involving CO Insertion into Aryl or Alkenyl Pd-Carbon
	Bonds 23

Catalyzed Carbon-Heteroatom Bond Formation. Edited by Andrei K. Yudin Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32428-6

VI	Contents	
	1.6.2	Transformations Involving CO Insertion Into a Pd–Heteroatom Bond 25
	1.6.3	Wacker-Type Carbonylative Processes 26
	1.7	Summary and Future Outlook 28
		References 28
	2	
		Charles S. Yeung, Peter K. Dornan, and Vy M. Dong
	2.1	Introduction 35
	2.2	Synthesis of Lactones Involving CO 36
	2.2.1	Carbonylation of C–X Bonds 36
	2.2.2	Carbonylation of C–M Bonds 39
	2.2.3	Hydrocarbonylation of C=C and C≡C Bonds 40
	2.2.4	Carbocarbonylation of C=C and C=C Bonds 42
	2.2.5	Heterocarbonylation of $C=C$ and $C\equiv C$ Bonds 43
	2.2.6	Miscellaneous Lactone Syntheses Involving CO 45
	2.3	Synthesis of Lactones via C=C and C≡C Addition 46
	2.3.1	Hydrocarboxylation of C=C and C=C Bonds 46
	2.3.2	Carbo- and Oxy-Carboxylation of C=C and C \equiv C Bonds 50
	2.4	Synthesis of Lactones via C=O Hydroacylation 52
	2.4.1	Aldehyde Hydroacylation 52
	2.4.2	Ketone Hydroacylation 53
	2.4.3	[4+2] Annulation 55
	2.5	Miscellaneous Syntheses of Lactones 56
	2.5.1	Oxidative Lactonization of Diols 56
	2.5.2	Reductive Cyclization of Ketoacids and Ketoesters 57
	2.5.3	C-H Oxygenation 58
	2.5.4	Ring Closure of Benzoic Acids with Dihaloalkanes 59
	2.5.5	Baeyer-Villiger Oxidation of Cyclic Ketones 60
	2.5.6	Ring Opening of Cyclopropanes with Carboxylic Acids 60
	2.5.7	Ring Closure of o-Iodobenzoates with Aldehydes 61
	2.5.8	Synthesis of Lactones Involving CO ₂ 62
	2.5.9	Michael Addition of α,β -Unsaturated N-Acylpyrrolidines 62
	2.5.10	[2 + 2] Cycloaddition of Ketenes and Aldehydes 63
	2.5.11	Tandem Cross-Metathesis/Hydrogenation Route to Lactones 63
	2.5.12	Modern Catalytic Variants of Classical Macrolactonizations 64
	2.6	Conclusions and Outlook 65
		References 65
	3	The Formation of Csp ² –S and Csp ² –Se Bonds by Substitution and
		Addition Reactions Catalyzed by Transition Metal Complexes 69
		Irina P. Beletskaya and Valentine P. Ananikov
	3.1	Introduction 69
	3.2	Catalytic Cross-Coupling Reactions 70

3.2.1	Pd-Catalyzed Transformations 70
3.2.2	Ni-Catalyzed Transformations 77
3.2.3	Cu-Catalyzed Transformations 79
3.2.4	Other Transition Metals as Catalysts 88
3.3	Catalytic Addition of RZ–ZR Derivatives to Alkynes (Z≡S, Se) 90
3.3.1	Pd and Ni-Catalyzed Formation of Vinyl Chalcogenides 90
3.3.2	Ni-Catalyzed Synthesis of Dienes 100
3.3.3	Rh-Catalyzed Reactions 101
3.3.4	Catalytic Addition of S-X and Se-X Bonds to Alkynes 102
3.3.5	Catalytic Addition to Allenes 103
3.4	Catalytic Addition of RZ-H Derivatives to Alkynes (Z≡S, Se) 104
3.4.1	Pd and Ni-Catalyzed Addition of Thiols and Selenols 104
3.4.2	Rh and Pt-Catalyzed Addition of Thiols to Alkynes 109
3.4.3	Catalytic Addition of Thiols and Selenols to Allenes 111
3.5	Conclusions 112
	References 113
4	Palladium Catalysis for Oxidative 1,2-Difunctionalization
	of Alkenes 119
	Béatrice Jacques and Kilian Muñiz
4.1	Introduction 119
4.2	Palladium-Catalyzed 1,2-Difunctionalization Reactions:
	Halogenation 120
4.3	Aminohalogenation Reactions 121
4.4	Dialkoxylation 125
4.5	Aminoacetoxylation Reactions 127
4.6	Diamination Reactions 131
4.7	Conclusion 134
	References 134
5	Rhodium-Catalyzed C-H Aminations 137
	Hélène Lebel 137
5.1	Metal Nitrenes from Iminoiodinanes 139
5.1.1	Intramolecular C–H amination 140
5.1.2	Intermolecular C–H Aminations 144
5.1.3	Mechanism of C-H Amination using Hypervalent Iodine
	Reagents 147
5.2	Metal Nitrenes from <i>N</i> -Tosyloxycarbamates 149
	References 154
6	The Palladium-Catalyzed Synthesis of Aromatic Heterocycles 157
	Yingdong Lu and Bruce A. Arndtsen
6.1	Introduction 157
6.2	Palladium π -Lewis Acidity. Intramolecular Nucleophilic Attack
	on Unsaturated Bonds 159

m	Contents	
	6.2.1	Addition to Alkynes 159
	6.2.2	Heteroatom Addition to Alkynes with Functionalization 164
	6.2.3	Heteroatom Addition to Allenes 168
	6.2.4	Heteroatom Additions to Alkenes 171
	6.3	Palladium-Catalyzed Carbon-Heteroatom Bond Forming
		Reactions 174
	6.3.1	Palladium-Catalyzed Carbon-Nitrogen Bond Formation 174
	6.3.2	Palladium-Catalyzed Carbon-Oxygen Bond Formation 177
	6.4	Palladium-Catalyzed Carbon–Heteroatom Bond Formation with Alkynes 178
	6.5	Heck Cyclizations 182
	6.6	Palladium Catalyzed C–H Bond Activation 185
	6.7	Multicomponent Coupling Reactions 189
	6.8	Summary and Outlook 194
		References 194
	7	New Reactions of Copper Acetylides: Catalytic Dipolar Cycloadditions and Beyond 199
		Valery V. Fokin
	7.1	Introduction 199
	7.2	Azide–Alkyne Cycloaddition: Basics 200
	7.3	Copper-Catalyzed Cycloadditions 203
	7.3.1	Catalysts and Ligands 203
	7.3.2	CuAAC with In Situ Generated Azides 208
	7.3.3	Mechanistic aspects of the CuAAC Reaction 208
	7.3.4	Reactions of Sulfonyl Azides 215
	7.3.5	Sulfonyl Triazoles as Stable Carbene Precursors 215
	7.3.6	Reactions of 1-Iodoalkynes 218
	7.3.7	Reactions of Copper Acetylides with Other Dipoles 220 References 221
	8	Transition Metal-Catalyzed Synthesis of Monocyclic Five-Membered
		Aromatic Heterocycles 227
		Alexander S. Dudnik and Vladimir Gevorgyan
	8.1	Introduction 227
	8.2	Monocyclic Five-Membered Heterocycles 228
	8.2.1	Furans 228
	8.2.1.1	Synthesis of Furans via Cycloisomerization Reactions 228
	8.2.1.2	Synthesis of Furans via " $3 + 2$ " Cycloaddition Reactions 264
	8.2.2	Pyrroles 273
	8.2.2.1	Synthesis of Pyrroles via Cycloisomerization Reactions 273
	8.2.2.2	Synthesis of Pyrroles via " $4 + 1$ " Cycloaddition Reactions 283
	8.2.2.3	Synthesis of Pyrroles via " $3 + 2$ " Cycloaddition Reactions 293
	8.2.2.4	Synthesis of Pyrroles via " $2 + 2 + 1$ " Cycloaddition
		Reactions 298

8.3	Conclusion 303
8.4	Abbreviations 308
	References 309
9	Transition Metal-Catalyzed Synthesis of Fused Five-Membered
	Aromatic Heterocycles 317
0.1	Alexander S. Dudnik and Vladimir Gevorgyan
9.1	Introduction 317
9.2	Fused Five-Membered Heterocycles 318
9.2.1	Benzofurans 318
9.2.1.1	Synthesis of Benzofurans via Cycloisomerization Reactions 318
9.2.1.2	Synthesis of Benzofurans via Intramolecular Arylation Reactions 327
9.2.1.3 9.2.1.4	Synthesis of Benzofurans via " $4 + 1$ " Cycloaddition Reactions 329 Synthesis of Benzofurans via " $3 + 2$ " Cycloaddition Reactions 331
9.2.1.4	
9.2.2.1	Benzothiophenes 333 Synthesis of Benzothiophenes via Cycloisomerization Reactions 334
9.2.2.1	Synthesis of Benzothiophenes via " $4 + 1$ " Cycloaddition Reactions 337
9.2.2.3	Synthesis of Benzothiophenes via $^{4} + ^{1}$ Cycloaddition Reactions 338
9.2.3	Indoles 339
9.2.3.1	Synthesis of Indoles via Cycloisomerization Reactions 340
9.2.3.2	Synthesis of Indoles via Cyclosomerization Reactions 340 Synthesis of Indoles via Intramolecular Arylation Reactions 362
9.2.3.3	Synthesis of Indoles via "4 + 1" Cycloaddition Reactions 368
9.2.3.4	Synthesis of Indoles via "4 + 1" Gycloaddition Reactions 373
9.2.4	Isoindoles 381
9.2.4.1	Synthesis of Isoindoles via Cycloisomerization Reactions 381
9.2.4.2	Synthesis of Isoindoles via "4 + 1" Cycloaddition Reactions 383
9.2.5	Indolizines 383
9.2.5.1	Synthesis of Indolizines via Cycloisomerization Reactions 385
9.2.5.2	Synthesis of Indolizines via "3 + 2" Cycloaddition Reactions 396
9.3	Conclusion 399
9.4	Abbreviations 401
	References 402
10	Carbon-Heteroatom Bond Formation by Rh ^I -Catalyzed
	Ring-Opening Reactions 411
	Matthew J. Fleming and Mark Lautens
10.1	Introduction 411
10.2	Ring-Opening meso-Oxabicyclic Alkenes with Oxygen-Based
	Nucleophiles 412
10.3	Ring-Opening meso-Oxabicyclic Alkenes with Nitrogen-Based
	Nucleophiles 417
10.4	Ring-Opening meso-Azabicyclic Alkenes with Nitrogen-Based
	Nucleophiles 419
10.5	Ring-Opening meso-Oxabicyclic Alkenes with Sulfur-Based
	Nucleophiles 423

x	Contents	
	10.6 10.7	Mechanistic Model 424 Ring-Opening Unsymmetrical Oxa- and Aza-bicyclic
	10.8	Alkenes with Heteroatom Nucleophiles 427 Ring-Opening of Vinyl Epoxides with Heteroatom Nucleophiles 432
	10.8	Conclusion 434
	10.5	References 435
	11	Gold-Catalyzed Addition of Nitrogen and Sulfur Nucleophiles
		to C–C Multiple Bonds 437
		Ross A. Widenhoefer and Feijie Song
	11.1	Introduction 437
	11.2	Addition of Nitrogen Nucleophiles to Alkynes 437
	11.2.1	Hydroamination 437
	11.2.1.1	Intramolecular Processes 437
	11.2.1.2	Intermolecular Processes 440
	11.2.2	Acetylenic Schmidt Reaction 441
	11.2.3	Tandem C-N/C-C Bond Forming Processes 442
	11.2.4	Tandem C-N/C-X Bond Forming Processes 446
	11.3	Hydroamination of Allenes 448 Intramolecular Processes 448
	11.3.1 11.3.2	Intramolecular Processes 448 Intermolecular Processes 449
	11.3.2	
	11.3.3	Enantioselective Processes 451 Hydroamination of Alkenes and Dienes 453
	11.4.1	Unactivated Alkenes 453
	11.4.1.1	Sulfonamides as Nucleophiles 453
	11.4.1.2	Carboxamide Derivatives as Nucleophiles 454
	11.4.1.3	Ammonium Salts as Nucleophiles 455
	11.4.2	Methylenecyclopropanes, Vinylcyclopropanes, and Dienes 456
	11.5	Addition of Sulfur Nucleophiles to C–C Multiple Bonds 457
	11.5.1	Alkynes 457
	11.5.2	Allenes and Dienes 458
		References 459
	12	Gold-Catalyzed Addition of Oxygen Nucleophiles
		to C-C Multiple Bonds 463
		Ross A. Widenhoefer and Feijie Song
	12.1	Introduction 463
	12.2	Addition to Alkynes 464
	12.2.1	Carbinols as Nucleophiles 464
	12.2.1.1	Intermolecular Processes 464
	12.2.1.2	Intramolecular Processes 465
	12.2.1.3	Tandem C-O/C-C Bond Forming Processes 466
	12.2.2	Ketones as Nucleophiles 467
	12.2.3	Aldehydes as Nucleophiles 469
	12.2.4	Carboxylic Acids as Nucleophiles 471

12.2.5	Rearrangements of Propargylic Carboxylates 471
12.2.5.1	Acyl Migration Followed by Nucleophilc Attack 471
12.2.5.2	Acyl Migration Followed by C=C/C≡C Addition 473
12.2.5.3	Acyl Migration Leading to Diene/Ketone Formation 474
12.2.6	Carbonates and Carbamates as Nucleophiles 475
12.2.7	Ethers and Epoxides as Nucleophiles 476
12.2.8	Additional Nucleophiles 477
12.3	Addition to Allenes 478
12.3.1	Carbinols as Nucleophiles 478
12.3.1.1	Intramolecular Processes 478
12.3.1.2	Enantioselective Processes 480
12.3.1.3	Intermolecular Processes 482
12.3.2	Ketones as Nucleophiles 483
12.3.3	Carboxylic Acid Derivatives as Nucleophiles 484
12.4	Addition to Alkenes 485
12.4.1	Alkenes and Dienes 485
12.4.2	Cyclization/Nucleophile Capture of Enynes 487
	References 488

Index 493