

Contents

1	Cracks in Rotating Shafts.....	1
1.1	Introduction.....	1
1.2	The Development of Transverse Cracks in Rotating Shafts	4
	References.....	14
2	Typical Dynamic Behaviour of Cracked Shafts.....	17
2.1	Introduction.....	17
2.2	Analysis of the Vibrations at Rated Speed.....	17
2.3	Thermal Sensitivity of Cracked Rotors.....	22
2.3.1	Case A – Steam Turbine	22
2.3.2	Case B – Generator	24
2.4	Dynamic Behaviour during Speed Transients.....	26
2.4.1	Case A – Generator.....	26
2.4.2	Case B – Generator	31
2.4.3	Case C – Test Rig	33
2.4.4	Final Comments	35
	References.....	35
3	Rotor Testing for Crack Detection.....	37
3.1	Dynamic and Static Tests for the Detection of Cracks in Rotors.....	37
3.1.1	Dynamic Tests	37
3.1.1.1	Case A: Impact Tests on a Test-Rig.....	37
3.1.1.2	Case B: Sinusoidal Excitation Tests on a HP-IP Turbine.....	39
3.1.2	Static Tests	41
3.1.2.1	Case A: Static Deflection of a Test-Rig	41
3.1.2.2	Case B: Static Deflection of a Generator	43
3.2	Non-destructive Testing for Power Generation Rotors.....	45
3.2.1	Basic Criteria for the Selection of Inspection Techniques	47
3.2.2	Methods Based on Visual Checks.....	49

3.2.2.1	Liquid (or dye) Penetrant Method (PT).....	49
3.2.2.2	Magnetic Particle Test (MPI).....	54
3.2.2.3	Direct Vision Method (VT).....	57
3.2.2.4	Comparative Considerations	59
3.2.3	Ultrasonic Inspections (UT).....	60
3.2.3.1	Traditional Approaches to UT Inspections	65
3.2.3.2	Application of Ultrasonic Phased Array Systems to Rotor Inspection.....	69
3.2.3.3	TOFD Technique for Rotor Inspection	71
3.2.3.4	Numerical Tools for Designing UT Inspections	75
3.2.4	Reliability of NDT Inspections	78
3.2.4.1	Sensitivity to Human and Environmental Factors.....	83
3.2.5	NDT as a Fundamental Aspect of Damage Tolerance Design... References.....	84
4	Laboratory Tests on Cracked Shafts.....	91
4.1	Introduction.....	91
4.2	Laboratory Test about Breathing Mechanism on a Specimen	91
4.2.1	Description of the Experimental Apparatus	94
4.2.2	Experimental Results	96
4.3	Factory Test Results about Thermal Sensitivity on a Steam Turbine.....	100
4.3.1	Tests at Low Rotating Speed	101
4.3.2	Tests during Speed Transients	104
	References.....	107
5	Crack Modelling.....	109
5.1	A Review about Crack Modelling	109
5.2	Fracture Mechanics Approach and Propagation of Cracks	111
5.2.1	Strain Energy Release Rate Approach	111
5.2.2	Finite Element Modelling of Cracked Elements	117
5.2.2.1	Two Dimensional Elements	117
5.2.2.2	Three Dimensional Singular Elements.....	119
5.2.2.3	Methods to Calculate the Stress Intensity Factors from Finite Element Results	122
5.2.3	Fatigue Crack Propagation.....	126
5.2.3.1	Paris' Law	128
5.2.3.2	Example of Propagation Speed Calculation.....	129
5.2.3.3	Crack Closure Effect.....	130
5.3	Modelling the Breathing Behaviour and Its Thermal Sensitivity.....	131
5.3.1	The Breathing Crack Simplified Model.....	135
5.4	Modelling the Crack	144
5.4.1	Approach Based on Fracture Mechanics (SERR Approach) ...	144
5.4.2	Approach Based on Energy Balance (EDF).....	150
5.4.3	Approach Based on "Equivalent Beam" (FLEX)	153
5.4.4	The 3D Model.....	161
5.4.5	Comparison of Results Obtained with the Models.....	162

5.5	Basic Modelling of a Cracked Rotor.....	169
5.5.1	Equations of Motion and Linearization for a Horizontal Shaft with Breathing Crack.....	174
5.5.2	Stability.....	178
5.5.3	Vibration Forced by the Crack Influence	183
5.5.4	Crack and Unbalance Response.....	189
5.5.5	Deeper Cracks.....	190
5.5.6	Final Remarks	191
5.6	Modelling the Cracked Rotor Dynamical Behaviour.....	191
	References.....	196
6	Results Obtained Using Simulations.....	199
6.1	Simulations Compared to Experimental Results.....	199
6.1.1	Results Obtained on EDF EURoPE Test-Rig	199
6.1.2	Results Obtained on PdM Test-Rig	201
6.1.3	Results Obtained on Real Machines	203
6.2	Sensitivity of Crack Induced Vibrations to Different Parameters.....	207
6.2.1	Sensitivity of Crack Excited Vibrations to Crack Depth and Position	207
6.2.1.1	Crack Effects on Rotating Shaft Lateral Vibrations.....	209
6.2.1.2	Evaluation of Vibration Components Excitation as Function of Crack Depth.....	211
6.2.1.3	Dynamic Behavior of a Cracked Shaft-Line	213
6.2.1.4	Description of a Typical Turbo Generator Unit	215
6.2.1.5	Evaluation of Static Bending Moments	216
6.2.1.6	Un-cracked Shaft-Line Dynamical Behaviour	218
6.2.1.7	Numerical Sensitivity Analysis.....	222
6.2.2	Effect of Crack Shape	229
6.2.2.1	Rectilinear Tip Crack Compared to Convex Elliptical Crack	230
6.2.2.2	Open Crack	231
6.2.2.3	Double Cracks.....	232
6.2.2.4	Triple Elliptical Cracks	232
6.2.3	Effects of Shear Forces on Cracked Shaft Deflections and Vibrations	236
6.2.3.1	Definition of Loads	237
6.2.3.2	Results.....	238
	References.....	246
7	Some Special Effects Caused by Cracks.....	247
7.1	Effect of Transverse Cracks on Torsional and Axial Vibrations	247
7.1.1	Static Axial and Torsional Deflections due to Coupling with Bending and Torsional Loads	248
7.1.2	Shift of Natural Torsional Frequency	252
7.1.3	Excitation of Sideband Component in Torsional Vibrations of a Test-Rig Shaft.....	254

7.1.4	Axial Vibration Excitation of a Test-Rig Shaft.....	258
7.1.5	Torsional Excitation in a Vertical Axis Centrifugal Pump	259
7.1.5.1	Description of the Pump	260
7.1.5.2	Description of the Model	261
7.1.5.3	Definition of Loads	262
7.1.5.4	Main Results	263
7.1.6	Excitation of Torsional Vibrations in a 1300 MW Turbo Generator.....	265
7.1.6.1	Description of the Unit.....	266
7.1.6.2	Results of the Torsional Model Only with Open Crack.....	267
7.1.6.3	Results of the Complete 6 d.o.f. Model with Breathing Crack	268
7.1.6.4	Results of the Complete 6 d.o.f. Model with Breathing Crack at Full Load and Nominal Speed....	272
7.2	Slant and Helical Cracks.....	273
7.2.1	Description of the Model	277
7.2.2	Breathing Mechanism	280
7.2.3	Deflections	281
7.2.4	Dynamic Tests	285
7.2.5	Final Remarks about Slant and Helical Cracks	286
7.3	Non-linear Behaviours in Cracked Rotors	286
7.3.1	Cracked Rotor Linear and Non-linear Modelling	288
7.3.2	Description of the Model and of the Method	289
7.3.3	Results Obtained with Shaft Loaded by Weight Only	292
7.3.4	Results Obtained with Shaft Loaded by Weight and Unbalance	292
7.3.5	Sub-harmonics.....	299
	References.....	300
8	Crack Diagnosis in Rotating Shafts.....	303
8.1	Diagnosis	303
8.2	Qualitative Approach.....	303
8.2.1	Definition of the Fault Matrix	304
8.2.2	Inference	307
8.2.3	Knowledge Representation	311
8.2.4	Symptom Generation	311
8.2.4.1	Description of Symptoms Used in Knowledge Base.....	315
8.2.5	Fault Description.....	319
8.2.6	Fault Matrix	324
8.2.7	Baseline.....	334
8.3	Results for the Qualitative Approach.....	337
8.4	Model Based Approach.....	340
8.4.1	Definition of Equivalent External Forces to Faults.....	341
8.4.2	Definition of Equivalent External Forces to Cracks	344

8.4.3	Crack Depth Identification.....	351
8.5	Results of Model Based Approach.....	357
8.5.1	Test-Rig of Politecnico di Milano	357
8.5.1.1	Natural Frequencies	359
8.5.1.2	Quasi-Static Behaviour	359
8.5.1.3	Dynamic Behaviour	360
8.5.2	Test-Rig of Électricité de France	367
8.5.2.1	Reference Situation	372
8.5.2.2	Case 1: Identification of a 34% Slot.....	375
8.5.2.3	Case 2: Identification of a 14% Crack	379
8.5.2.4	Case 3: Identification of a 47% Crack	384
	References.....	392
	Index.....	395