

Contents

List of Contributors XIII

Preface XVII

1	Introduction 1
	<i>Wei Zhang and Shu-Li You</i>
1.1	Why Asymmetric Dearomatization Reactions? 1
1.2	Discovery of Aromatic Compounds and Dearomatization Reactions 1
1.3	Development of Dearomatization Reactions 3
1.4	Asymmetric Dearomatization Reactions 7
	References 8
2	Asymmetric Dearomatization with Chiral Auxiliaries and Reagents 9
	<i>E. Peter Kündig</i>
2.1	Introduction 9
2.2	Chiral σ -Bound Auxiliaries 9
2.2.1	Oxazolines 9
2.2.2	Imines, Oxazolidines, and Hydrazones 15
2.2.3	Chiral Ethers and Amines 16
2.3	Diastereospecific Anionic Cyclizations 20
2.4	Use of Chiral Reagents 21
2.4.1	Chiral Bases in Dearomatizing Cyclizations 21
2.4.2	Chiral Nucleophiles 23
2.4.3	Chiral Ligands in Enantioselective Nucleophilic Additions 23
2.5	Chiral π -Complexes 26
2.5.1	Planar Chiral η^6 -Arene Complexes 26
2.5.2	η^6 -Arene Complexes with a Chiral Ligand 28
2.5.3	Complexes with Stereogenic Metal Centers 29
2.6	Conclusion 30
	References 30

3	Organocatalytic Asymmetric Transfer Hydrogenation of (Hetero)Arenes	33
	<i>Gaëlle Mingat and Magnus Rueping</i>	
3.1	Introduction	33
3.2	Organocatalytic Asymmetric Transfer Hydrogenation of Heteroaromatics	34
3.2.1	Quinolines	34
3.2.1.1	Proof-of-Concept	34
3.2.1.2	2-Substituted Quinolines	35
3.2.1.3	4-Substituted Quinolines	40
3.2.1.4	3-Substituted Quinolines	41
3.2.1.5	2,3-Disubstituted Quinolines	42
3.2.1.6	<i>Spiro</i> -Tetrahydroquinolines	45
3.2.2	Benzoxazines, Benzothiazines, and Benzoxazinones	47
3.2.3	Benzodiazepines and Benzodiazepinones	49
3.2.4	Pyridines	51
3.2.5	3 <i>H</i> -Indoles	51
3.2.6	Quinoxalines and Quinoxalinones	52
3.3	Organocatalytic Asymmetric Transfer Hydrogenation in Aqueous Solution	53
3.4	Cascade Reactions	54
3.4.1	Introduction	54
3.4.2	<i>In situ</i> Generation of the Heteroarene	54
3.4.3	Dearomatization of Pyridine/Asymmetric <i>aza</i> -Friedel–Crafts Alkylation Cascade	56
3.4.4	Combining Photochemistry and Brønsted Acid Catalysis	57
3.4.4.1	Quinolines	57
3.4.4.2	Pyrylium ions	58
3.5	Cooperative and Relay Catalysis: Combining Brønsted Acid- and Metal-Catalysis	59
3.5.1	Introduction	59
3.5.2	Improvements in Transfer Hydrogenation	60
3.5.2.1	Regenerable Hydrogen Sources	60
3.5.2.2	Asymmetric Relay Catalysis (ARC)	62
3.5.3	Cooperative Metal–Brønsted Acid Catalysis	63
3.6	Summary and Conclusion	65
	References	66
4	Transition-Metal-Catalyzed Asymmetric Hydrogenation of Aromatics	69
	<i>Ryoichi Kuwano</i>	
4.1	Introduction	69
4.2	Catalytic Asymmetric Hydrogenation of Five-Membered Heteroarenes	71
4.2.1	Catalytic Asymmetric Hydrogenation of Azoles and Indoles	71

4.2.1.1	Rhodium-Catalyzed Asymmetric Hydrogenation of Indoles	71
4.2.1.2	Ruthenium-Catalyzed Asymmetric Hydrogenation of Azoles	73
4.2.1.3	Palladium-Catalyzed Asymmetric Hydrogenation of Azoles	75
4.2.1.4	Iridium-Catalyzed Asymmetric Hydrogenation of Indoles	77
4.2.2	Catalytic Asymmetric Hydrogenation of Oxygen-Containing Heteroarenes	77
4.2.3	Catalytic Asymmetric Hydrogenation of Sulfur-Containing Heteroarenes	79
4.3	Catalytic Asymmetric Hydrogenation of Six-Membered Heteroarenes	79
4.3.1	Catalytic Asymmetric Hydrogenation of Azines	80
4.3.1.1	Iridium-Catalyzed Asymmetric Hydrogenation of Pyridines	80
4.3.1.2	Iridium-Catalyzed Asymmetric Hydrogenation of Pyrimidines	81
4.3.2	Catalytic Asymmetric Hydrogenation of Benzo-Fused Azines	82
4.3.2.1	Iridium-Catalyzed Asymmetric Hydrogenation of Quinolines	82
4.3.2.2	Ruthenium-Catalyzed Asymmetric Hydrogenation of Quinolines	85
4.3.2.3	Iridium-Catalyzed Asymmetric Hydrogenation of Isoquinolines	87
4.3.2.4	Iridium-Catalyzed Asymmetric Hydrogenation of Quinoxalines	89
4.3.2.5	Ruthenium-Catalyzed Asymmetric Hydrogenation of Quinoxalines	90
4.3.2.6	Iron-Catalyzed Asymmetric Hydrogenation of Quinoxalines	92
4.3.2.7	Catalytic Asymmetric Hydrogenation of Miscellaneous Six-Membered Heteroarenes	92
4.3.3	Catalytic Asymmetric Reduction of Quinolines with Reducing Agents Other Than H ₂	94
4.4	Catalytic Asymmetric Hydrogenation of Carbocyclic Arenes	95
4.4.1	Ruthenium-Catalyzed Asymmetric Hydrogenation of Carbocycles in Benzo-Fused Heteroarenes	96
4.4.2	Ruthenium-Catalyzed Asymmetric Hydrogenation of Naphthalenes	97
4.5	Summary and Conclusion	97
	References	98
5	Stepwise Asymmetric Dearomatization of Phenols	103
	<i>Qing Gu</i>	
5.1	Introduction	103
5.2	Stepwise Asymmetric Dearomatization of Phenols	103
5.2.1	Asymmetric [4+2] Reaction	103
5.2.2	Asymmetric Heck Reaction	106
5.2.3	Asymmetric (Hetero) Michael Reaction	108
5.2.4	Asymmetric Stetter Reaction	119
5.2.5	Asymmetric Rauhut–Currier Reaction	120
5.2.6	Asymmetric 1,6-Diene Cyclized Reaction	122

5.3	Conclusion and Perspective	126
	References	127
6	Asymmetric Oxidative Dearomatization Reaction	129
	<i>Muhammet Uyanik and Kazuaki Ishihara</i>	
6.1	Introduction	129
6.2	Diastereoselective Oxidative Dearomatization using Chiral Auxiliaries	129
6.3	Enantioselective Oxidative Dearomatization using Chiral Reagents or Catalysts	132
6.3.1	Chiral Transition Metal Complexes	132
6.3.2	Chiral Hypervalent Iodines(III, V) and Hypoiodites(I)	139
6.4	Conclusions and Perspectives	148
	References	149
7	Asymmetric Dearomatization via Cycloaddition Reaction	153
	<i>Sarah E. Reisman, Madeleine E. Kieffer, and Haoxuan Wang</i>	
7.1	Introduction	153
7.2	[2 + 1] Cycloaddition	153
7.2.1	Asymmetric Büchner Reaction	153
7.2.2	Cyclopropanation of Heterocyclic Compounds	155
7.3	[3 + 2] Cycloaddition	156
7.4	[3 + 3] Cycloaddition	161
7.5	[4 + 2] Cycloaddition	163
7.6	[4 + 3] Cycloaddition	170
7.7	Conclusion	173
	References	173
8	Organocatalytic Asymmetric Dearomatization Reactions	175
	<i>Susana S. Lopez, Sri K. Nimmagadda, and Jon C. Antilla</i>	
8.1	Introduction	175
8.2	Diels–Alder	175
8.3	Oxidative Dearomatization	179
8.4	Cascade Reactions	186
8.5	Stepwise	193
8.6	Nucleophilic Dearomatization	200
8.7	Summary and Conclusion	204
	References	205
9	Dearomatization via Transition-Metal-Catalyzed Allylic Substitution Reactions	207
	<i>Tetsuhiro Nemoto and Yasumasa Hamada</i>	
9.1	Introduction	207
9.2	Dearomatization of Indoles and Pyrroles via Transition-Metal-Catalyzed Allylic Substitution Reactions	208

9.3	Dearomatization of Phenols via Transition-Metal-Catalyzed Allylic Substitution Reactions	216
9.4	Dearomatization of Phenols and Indoles via Activation of Propargyl Carbonates with Pd Catalyst	221
9.5	Conclusion	226
	References	226
10	Dearomatization via Transition-Metal-Catalyzed Cross-Coupling Reactions	229
	<i>Robin B. Bedford</i>	
10.1	Introduction: From Cross-Coupling to Catalytic Dearomatization	229
10.2	Dearomatization of Phenolic Substrates	231
10.3	Dearomatization of Nitrogen-Containing Substrates	240
10.4	Conclusion and Outlook	244
	References	245
11	Dearomatization Reactions of Electron-Deficient Aromatic Rings	247
	<i>Chihiro Tsukano and Yoshiji Takemoto</i>	
11.1	Introduction	247
11.2	Dearomatization of Activated Pyridines and Other Electron-Deficient Heterocycles	248
11.2.1	Dearomatization via Alkyl Pyridinium Salts	248
11.2.1.1	Reduction with Borohydrides	248
11.2.1.2	Reduction with $\text{Na}_2\text{S}_2\text{O}_4$	249
11.2.1.3	Reduction with Other Reducing Agents	250
11.2.1.4	Nucleophilic Addition of Grignard Reagents	251
11.2.1.5	Nucleophilic Addition of Cyanide	252
11.2.1.6	Addition of Other Carbon Nucleophiles	252
11.2.2	Dearomatization via Alkoxy carbonylpyridinium Salts	253
11.2.2.1	Reduction with Hydride Nucleophiles	254
11.2.2.2	Addition of Metal Nucleophiles, Including Grignard Reagents	255
11.2.2.3	Addition of Enolates and Related Carbon Nucleophiles	261
11.2.2.4	Nucleophilic Addition of Cyanide	264
11.2.2.5	Addition of Other Nucleophiles	265
11.2.3	Dearomatization via Acyl Pyridinium Salts	266
11.2.3.1	Reduction with Hydride Reducing Agents	266
11.2.3.2	Addition of Metal Nucleophiles Including Grignard Reagents	269
11.2.3.3	Addition of Enolates and Related Carbon Nucleophiles	270
11.2.4	Dearomatization through Other Pyridinium Cations	270
11.3	Summary and Conclusion	274
	References	274

12	Asymmetric Dearomatization Under Enzymatic Conditions	279
	<i>Simon E. Lewis</i>	
12.1	Introduction	279
12.2	Dearomatizing Arene <i>cis</i> -Dihydroxylation	280
12.2.1	Early Development	280
12.2.2	Types of Arene Dioxygenase	281
12.2.3	Substrate Scope and Regioselectivity	283
12.2.3.1	Monocyclic Substituted Benzene Substrates (Excluding Biaryls)	299
12.2.3.2	Biaryl Substrates	299
12.2.3.3	Naphthalene Substrates	299
12.2.3.4	Benzoic Acid Substrates	299
12.2.3.5	Heterocyclic Substrates (Mono- and Bicyclic)	300
12.2.3.6	Bicyclic Carbocyclic Substrates (Other than Naphthalenes)	300
12.2.3.7	Tricyclic Substrates (Carbo- and Heterocyclic)	300
12.2.4	Availability of Arene <i>cis</i> -Diols	300
12.2.5	Uses in Synthesis	302
12.2.5.1	Total Synthesis	302
12.2.5.2	Pharmaceuticals and Agrochemicals	315
12.2.5.3	Polymers	317
12.2.5.4	Flavors and Fragrances	320
12.2.5.5	Dyes	321
12.2.5.6	Ligands and MOFs	321
12.2.6	Increasing the Substrate Scope	324
12.2.7	Accessing Both Enantiomeric Series	326
12.2.8	Improvements to the Production Process	328
12.3	Dearomatizing Arene Epoxidation	328
12.4	Dearomatizing Arene Reduction	330
12.5	Summary and Conclusion	330
	List of Abbreviations	331
	References	332
13	Total Synthesis of Complex Natural Products via Dearomatization	347
	<i>Weiqing Xie and Dawei Ma</i>	
13.1	Introduction	347
13.2	Natural Products Synthesis via Oxidative Dearomatization	348
13.2.1	Enzymatic Dihydroxylative Dearomatization of Arene	348
13.2.2	Oxidative Dearomatization of Phenol	349
13.2.3	Oxidative Cycloisomerization Reaction of Phenol	355
13.2.4	Oxidative Dearomatization of Indole in Synthesis of Natural Products	357
13.3	Dearomatization via Cycloaddition in Synthesis of Natural Products	360
13.4	Dearomatization via Nucleophilic Addition in Synthesis of Natural Products	367

13.5	Reductive Dearomatization in Synthesis of Natural Products	367
13.6	Dearomatization via Electrophilic Addition in Synthesis of Natural Products	369
13.7	Dearomatization via Intramolecular Arylation in Natural Products Synthesis	371
13.8	Summary and Perspective	373
	References	374
14	Miscellaneous Asymmetric Dearomatization Reactions	379
	<i>Wei Zhang and Shu-Li You</i>	
14.1	Introduction	379
14.2	Miscellaneous Asymmetric Dearomatization Reactions	379
14.3	Conclusions and Perspectives	388
	References	388
	Index	391