Contents

1	Introduction					
	1.1	Mouse	e embryonic stem cells: control of the pluripotent state	4		
	1.2	Down	stream differentiation events triggered by the pluripotency net-			
		work		7		
2	Global regulation of expression in early differentiation of mESCs 1					
	2.1	The X:A ratio is fine tuned by two opposing processes				
		2.1.1	Introduction	15		
		2.1.2	The transcriptome time series captures the signature of X			
			inactivation	19		
		2.1.3	No X chromosome upregulation in undifferentiated cells	22		
		2.1.4	Ancestral X-linked genes are upregulated during differentiation	25		
		2.1.5	Discussion and outlook	31		
	2.2	Progr	ess of differentiation is timed to compensation of X dosage $$	35		
		2.2.1	Introduction	35		
		2.2.2	Female mESC are delayed in differentiation	36		
		2.2.3	Methylation is linked to differentiation delay	40		
		2.2.4	X dosage and methylation are connected via MAPK signaling	43		
		2.2.5	Discussion and outlook	49		
3	An	nechan	ism for coordinated expression of adjacent genes	53		
	3.1	Intro	luction	53		
	3.2	2 Topological domains and co-expression modules		5		
	3.3	Both	the Tsix and Xist module are essential for proper Xist expression	59		
	3.4	Assoc	iation of co-expression and domains holds genome-wide	6		
	3.5	Expre	ession fluctuations of neighboring loci are reduced in domains .	6		
	3.6	Proteins encoded in the same domain preferentially interact				
	3.7	Discu	ssion and outlook	7		

ii Contents

4	Uncovering regulation of individual genes by transcription factors in					
	mE:	SCs	77			
	4.1	Introduction	77			
	4.2	Statistical measures of association used for network prediction	83			
	4.3	Gold standards for determining direct TF-gene interactions	86			
	4.4	How the transcriptome data was obtained	89			
	4.5	Benchmark of network predictions: pruning determines success	91			
	4.6	Predicted topologies of the TF-TF network differ strongly	94			
	4.7	Discussion and outlook	100			
5	Conclusions					
6	Materials and Methods 129					
	6.1	Array Analysis for the three cell lines XO,XY and XX	129			
	6.2	Chapter 2	129			
	6.3	Chapter 3	135			
	6.4	Chapter 4	137			
7	Sup	plementary Figures	143			