Contents

List of Contributors xiiiAbout the Series Editors xv

1 Introduction and Overview 1
John Villadsen

Part One Fundamentals of Bioengineering 3

Experimentally Determined Rates of Bio-Reactions 5 John Villadsen
Summary 5
Introduction 5
Mass Balances for a CSTR Operating at Steady State 7
Operation of the Steady-State CSTR 13
References 16
Redox Balances and Consistency Check of Experiments 17 John Villadsen
Summary 17
Black-Box Stoichiometry Obtained in a CSTR Operated at Steady State 17
Calculation of Stoichiometric Coefficients by Means
of a Redox Balance 20
Applications of the Redox Balance 23
Composition of the Biomass $X=28$
Combination of Black-Box Models 30
Application of Carbon and Redox Balances in Bio-Remediation
Processes 34
References 38

4 Primary Metabolic Pathways and Metabolic Flux Analysis 39
John Villadsen
Summary 39

۷۱	Contents	
	4.0	Introduction 39
	4.1	Glycolysis 43
	4.2	Fermentative Metabolism: Regenerating the NAD ⁺
		Lost in Glycolysis 47
	4.3	The TCA Cycle: Conversion of Pyruvate to NADH + FADH ₂ , to Precursors or Metabolic Products 50
	4.4	NADPH and Biomass Precursors Produced in the PP Pathway
	4.5	Oxidative Phosphorylation: Production of ATP from
		NADH (FADH ₂) in Aerobic Fermentation 57
	4.6	Summary of the Biochemistry of Primary Metabolic
		Pathways 59
	4.7	Metabolic Flux Analysis Discussed in Terms of Substrate
		to Product Pathways 61
	4.8	Metabolic Flux Analysis Discussed in Terms of Individual
		Pathway Rates in the Network 88
	4.9	Propagation of Experimental Errors in MFA 94
	4.10	Conclusions 96
		References 96
	5	A Primer to ¹³ C Metabolic Flux Analysis 97 Wolfgang Wiechert, Sebastian Niedenführ, and Katharina Nöh Summary 97
	5.1	Introduction 97
	5.2	Input and Output Data of ¹³ C MFA 99
	5.3	A Brief History of ¹³ C MFA 101
	5.4	An Illustrative Toy Example 102
	5.5	The Atom Transition Network 104
	5.6	Isotopomers and Isotopomer Fractions 104
	5.7	The Isotopomer Transition Network 105
	5.8	Isotopomer Labeling Balances 107
	5.9	Simulating an Isotope Labeling Experiment 109
	5.10	Isotopic Steady State 110
	5.11	Flux Identifiability 112
	5.12	Measurement Models 113
	5.13	Statistical Considerations 114
	5.14	Experimental Design 115
	5.15	Exchange Fluxes 116
	5.16	Multidimensional Flux Identifiability 118
	5.17	Multidimensional Flux Estimation 120
	5.18	The General Parameter Fitting Procedure 121

Multidimensional Statistics 123

Some Final Remarks on Network

Specification 130

Multidimensional Experimental Design 124

The Isotopically Nonstationary Case 127

5.19

5.20

5.21

5.22

56

5.23	Algorithms and Software Frameworks for ¹³ C MFA 132
	Glossary 135
	References 137
6	Genome-Scale Models 143
	Basti Bergdahl, Nikolaus Sonnenschein, Daniel Machado,
	Markus Herrgård, and Jochen Förster
	Summary 143
6.1	Introduction 143
6.2	Reconstruction Process of Genome-Scale Models 144
6.3	Genome-Scale Model Prediction 147
6.3.1	Mathematical Description of Biochemical Reaction Systems 147
6.3.2	Constraint-Based Modeling 148
6.3.3	Pathway Analysis 148
6.3.4	Flux Balance Analysis 150
6.3.5	Engineering Applications of Constraint-Based Modeling 151
6.4	Genome-Scale Models of Prokaryotes 152
6.4.1	Escherichia Coli 153
6.4.2	Other Prokaryotes 156
6.4.3	Prokaryotic Communities 158
6.5	Genome-Scale Models of Eukaryotes 159
6.5.1	Saccharomyces Cerevisiae 160
6.5.2	Other Unicellular Eukaryotes 164
6.5.3	Other Multicellular Eukaryotes 166
6.6	Integration of Polyomic Data into Genome-Scale Models 169
6.6.1	Integration of Transcriptomics and Proteomics Data 170
6.6.2	Metabolomics Data 171
6.6.3	Integration of Multiple Omics 172
	Acknowledgment 172
	References 173
7	Kinetics of Bio-Reactions 183
	John Villadsen
	Summary 183
7.1	Simple Models for Enzymatic Reactions and for Cell
	Reactions with Unstructured Biomass 184
7.2	Variants of Michaelis–Menten and Monod kinetics 189
7.3	Summary of Enzyme Kinetics and the Kinetics for Cell Reactions 201
7.4	Cell Reactions with Unsteady State Kinetics 203
7.5	Cybernetic Modeling of Cellular Kinetics 211
7.6	Bioreactions with Diffusion Resistance 213
7.7	Sequences of Enzymatic Reactions: Optimal Allocation
	of Enzyme Levels 221
	References 230

VIII	Content
V 111 .	Content

8	Application of Dynamic Models for Optimal Redesign of Cell Factories 233
	Matthias Reuss
	Summary 233
8.1	Introduction 233
8.2	Kinetics of Pathway Reactions: the Need to Measure in a Very Narrow Time Window 235
8.2.1	Sampling 238
8.2.2	Quenching and Extraction 240
8.2.3	Analysis 241
8.2.4	Examples for Quantitative Measurements of Metabolites
	in Stimulus–Response Experiments 242
8.3	Tools for <i>In Vivo</i> Diagnosis of Pathway Reactions 245
8.3.1	Modular Decomposition of the Network: the Bottom-Up
	Approach 247
8.4	Examples: The Pentose-Phosphate Shunt and Kinetics of
	Phosphofructokinase 247
8.4.1	Kinetics of the Irreversible Reactions of the Pentose-Phosphate
	Shunt 247
8.4.2	Kinetics of the Phophofructokinase I (PFK1) 252
8.5	Additional Approaches for Dynamic Modeling Large Metabolic
	Networks 256
8.5.1	Generalized Mass Action 259
8.5.2	S-Systems Approach 260
8.5.3	Convenience Kinetics 260
8.5.4	Log-Lin and Lin-Log Approaches 260
8.6	Dynamic Models Used for Redesigning Cell Factories.
	Examples: Optimal Ethanol Production in Yeast
	and Optimal Production of Tryptophan in E. Coli 268
8.6.1	Dynamic Model 269
8.6.2	Metabolic Control (Sensitivity) Analysis 270
8.6.3	Synthesis Amplification of Hexose Transporters 271
8.6.4	Objective Function 273
8.6.5	Optimal Solutions 275
8.6.6	Flux Optimization of Tryptophan Production with
	E. Coli 276
8.7	Target Identification for Drug Development 280
	References 285
9	Chemical Thermodynamics Applied in Bioengineering 293
	John Villadsen
	Summary 293
9.0	Introduction 293
9.1	Chemical Equilibrium and Thermodynamic State
	Functions 296

9.2	Thermodynamic Properties Obtained from Galvanic Cells 305
9.3	Conversion of Free Energy Harbored in NADH and FADH ₂
7.0	to ATP in Oxidative Phosphorylation 310
9.4	Calculation of Heat of Reaction $Q=(-\Delta H_c)$ and of $(-\Delta G_c)$
7.1	Based on Redox Balances 312
	References 317
	References 317
Part Tv	wo Bioreactors 319
10	Design of Ideal Bioreactors 321
	John Villadsen
100	Summary 321
10.0	Introduction 321
10.1	The Design Basis for a Once-Through Steady-State CSTR 322
10.2	Combination of Several Steady-State CSTRs in Parallel or in Series 329
10.3	Recirculation of Biomass in a Single Steady-State CSTR 332
10.4	A Steady-State CSTR with Uptake of Substrates from a Gas Phase 338
10.5	Fed-Batch Operation of a Stirred Tank Reactor in
	the Bio-Industry 340
10.6	Loop Reactors: a Modern Version of Airlift Reactors 349
	References 355
11	Mixing and Mass Transfer in Industrial Bioreactors 357
	John Villadsen
	Summary 357
11.0	Introduction 357
11.1	Definitions of Mixing Processes 358
11.2	The Power Input <i>P</i> Delivered by Mechanical Stirring 362
11.3	Mixing and Mass Transfer in Industrial Reactors 367
11.4	Conclusions 372
	References 376
Part Th	nree Downstream Processing 379
12	Product Recovery from the Cultures 381
	Sunil Nath
10.0	Summary 381
12.0	Introduction 381
12.1	Steps in Downstream Processing and Product Recovery 383
12.2	Baker's Yeast 383

12.3	Xanthan Gum 384
12.4	Penicillin 385
12.5	α-A Interferon 386
12.6	Insulin 390
12.7	Conclusions 391
	References 391
13	Purification of Bio-Products 393
	Sunil Nath
	Summary 393
13.1	Methods and Types of Separations in Chromatography 394
13.2	Materials Used in Chromatographic Separations 396
13.3	Chromatographic Theory 398
13.4	Practical Considerations in Column Chromatographic
	Applications 399
13.5	Scale-Up 401
13.6	Industrial Applications 402
13.7	Some Alternatives to Column Chromatographic Techniques 403
13.8	Electrodialysis 403
13.9	Electrophoresis 404
13.10	Conclusions 407
	References 407
Part Fo	our Process Development, Management and Control 409
14	Real-Time Measurement and Monitoring of Bioprocesses 411
	Bernhard Sonnleitner
	Summary 411
14.1	Introduction 411
14.2	Variables that should be Known 414
14.3	Variables Easily Accessible and Standard 415
14.4	Variables Requiring More Monitoring Effort and Not Yet
	Standard 422
14.4.1	Biomass 422
14.4.2	Products and Substrates 427
14.5	Data Evaluation 433
	References 434
15	Control of Bioprocesses 439
	Jakob Kjøbsted Huusom
	Summary 439
15.1	Introduction 439
15.2	Bioprocess Control 440
15.2.1	Design Variables in Bioreactor Control 443

X Contents

15.2.2	Challenges with Respect to Control of a Bioreactor 450
15.3	Principles and Basic Algorithms in Process Control 450
15.3.1	Open Loop Control 450
15.3.2	Feed-forward and Feedback Control 451
15.3.3	Single-Loop PID Control 452
15.3.4	Diagnostic Control Strategies 456
15.3.5	Plant-Wide Control Design 458
	References 460
16	Scale-Up and Scale-Down 463
	Henk Noorman
	Summary 463
16.1	Introduction 463
16.2	Description of the Large Scale 465
16.2.1	Mixing 468
16.2.2	Mass Transfer 472
16.2.3	CO ₂ Removal 475
16.2.4	Cooling 475
16.2.5	Gas-Liquid Separation 476
16.3	Scale Down 480
16.3.1	One-Compartment Systems 482
16.3.2	Two-Compartment Systems 484
16.4	Investigations at Lab Scale 485
16.4.1	Gluconic Acid 485
16.4.2	Lipase 486
16.4.3	Baker's Yeast 488
16.4.4	Penicillin 490
16.5	Scale Up 491
16.6	Outlook 494
	References 495
17	Commercial Development of Fermentation Processes 499
	Thomas Grotkjær
	Summary 499
17.1	Introduction 499
17.2	Basic Principles of Developing New Fermentation Processes 501
17.3	Techno-economic Analysis: the Link Between Science, Engineering, and Economy 506
17.3.1	Value Drivers and Production Costs of Fermentation Processes 506
17.3.2	Assessment of New Fermentation Technologies 519
17.3.3	Assessment of Competing Petrochemical Technologies 526
17.4	From Fermentation Process Development to the Market 528
17.4.1	The Value Chain of the Chemical Industry 530
17.4.2	Innovation and Substitution Patterns in the Chemical Industry 534
17.5	The Industrial Angle and Opportunities in the Chemical Industry 537

XII Contents

17.6 Evaluation of Business Opportunities 540
 17.7 Concluding Remarks and Outlook 542
 Acknowledgment 543
 References 543

Index *547*